I will show the argument when the subsets of $\mathbb{N}$ are finite. Let $A=\{a_1,...,a_n\}\subset \mathbb{N}$. Let $(X_n)_{n \in \mathbb{N}}$ be random variables. Then, $(X_{a_1},...,X_{a_n}):\Omega\to \mathbb{R}^n$ is a $\mathscr{F}/\mathscr{B}(\mathbb{R}^n)$-random variable.
We first prove that $\sigma(X_{a_k},a_k \in A)=\sigma((X_{a_1},...,X_{a_n}))$. We have $(\subseteq )$ because - for each $k\in\{1,...,n\}$ - $X_{a_k}=\pi_k((X_{a_1},...,X_{a_n}))$ (the $k$-th coordinate projection, which is a measurable function); indeed, by monotonicity of smallest $\sigma$-algebras
$$\cup_{a_k\in A}\sigma(X_{a_k})\subseteq \sigma((X_{a_1},...,X_{a_n}))\implies \sigma(X_{a_k},a_k \in A)\subseteq \sigma((X_{a_1},...,X_{a_n}))$$
Now to prove $(\supseteq)$ we argue as following. We have that $\mathscr{B}(\mathbb{R}^n)=\sigma(\times_{n}\mathscr{B}(\mathbb{R}))$ where the sets in $\times_{n}\mathscr{B}(\mathbb{R})$ are the 'rectangles' $B_1\times ...\times B_n$, $B_\ell \in \mathscr{B}(\mathbb{R})$. Also note that for any such rectangle,
$$(X_{a_1},...,X_{a_n})^{-1}(B_1\times ...\times B_n)=X_{a_1}^{-1}(B_1)\cap...\cap X_{a_n}^{-1}(B_n)\in \sigma(X_{a_k},a_k \in A)$$
so $(X_{a_1},...,X_{a_n})^{-1}(\times_{n}\mathscr{B}(\mathbb{R}))\subseteq \sigma(X_{a_k},a_k \in A)$. Therefore, again by monotonicity and commutativity of smallest $\sigma$-algebras:
$$\begin{aligned}\sigma((X_{a_1},...,X_{a_n}))&:=(X_{a_1},...,X_{a_n})^{-1}(\mathscr{B}(\mathbb{R}^n))\\
&=(X_{a_1},...,X_{a_n})^{-1}(\sigma(\times_{n}\mathscr{B}(\mathbb{R})))\\
&=\sigma((X_{a_1},...,X_{a_n})^{-1}(\times_{n}\mathscr{B}(\mathbb{R})))\\
&\subseteq \sigma(X_{a_k},a_k \in A)
\end{aligned}$$
At this point, suppose $(X_n)_{n \in \mathbb{N}}$ are independent. Let $C=\{c_1,...,c_k\}$ s.t. $A\cap C=\emptyset$. We have
$$\begin{aligned}
&P((X_{a_1},...,X_{a_n})\in B_1\times ...\times B_n,(X_{c_1},...,X_{c_k}) \in D_1\times ...\times D_k)\\
&=P(X_{a_1}\in B_{1},...,X_{a_n}\in B_n,X_{c_1}\in D_1,...,X_{c_k}\in D_k)\\
&=P(X_{a_1}\in B_{1},...,X_{a_n}\in B_n)P(X_{c_1}\in D_1,...,X_{c_k}\in D_k)\\
&=P((X_{a_1},...,X_{a_n})\in B_1\times ...\times B_n)P((X_{c_1},...,X_{c_n})\in D_1\times ...\times D_k)
\end{aligned}$$
Now fix $D_1\times ...\times D_k$. We have:
$$\begin{aligned}\times_n\mathscr{B}(\mathbb{R})\subseteq &\{E \in \mathscr{B}(\mathbb{R}^n):P((X_{a_1},...,X_{a_n})\in E)P((X_{c_1},...,X_{c_n})\in D_1\times ...\times D_k)\\
&=P((X_{a_1},...,X_{a_n})\in E,(X_{c_1},...,X_{c_n})\in D_1\times ...\times D_k)\}
\end{aligned}$$
The rhs is a Dynkin $\lambda$-system. The lhs is a $\cap$-stable family (a $\pi$-system). The $\pi$-$\lambda$ theorem yields
$$\mathscr{B}(\mathbb{R}^n)=\textrm{ rhs}$$
Now note $D_1\times ...\times D_k$ was an arbitrary rectangle from $\times_k\mathscr{B}(\mathbb{R})$. We repeat the previous step. We have
$$\begin{aligned}\times_k\mathscr{B}(\mathbb{R})\subseteq &\{F \in \mathscr{B}(\mathbb{R}^k):P((X_{a_1},...,X_{a_n})\in E)P((X_{c_1},...,X_{c_n})\in F)\\
&=P((X_{a_1},...,X_{a_n})\in E,(X_{c_1},...,X_{c_n})\in F),\forall E \in \mathscr{B}(\mathbb{R}^n)\}
\end{aligned}$$
Again, the $\pi$-$\lambda$ theorem yields
$$\mathscr{B}(\mathbb{R}^k)=\textrm{ rhs}$$
But then this means:
$$\begin{aligned}
&P((X_{a_1},...,X_{a_n})\in E)P((X_{c_1},...,X_{c_n})\in F)\\
&=P((X_{a_1},...,X_{a_n})\in E,(X_{c_1},...,X_{c_n})\in F),\\
&\forall E \in \mathscr{B}(\mathbb{R}^n),\forall F \in \mathscr{B}(\mathbb{R}^k)
\end{aligned}$$
Which means that $\sigma((X_{a_1},...,X_{a_n}))$ is independent of $\sigma((X_{c_1},...,X_{c_n}))$. We conclude.