I have learned the definition of the Resultant of two polynomials Resultant of two polynomials. In most places, it is defined over a field. Can we similarly define it for the general ring, for example, $R = \mathbb{Z}/(p^{k}\mathbb{Z})$, where $p$ is any prime and $k \in \mathbb{N}$?
Assume $f(x), g(x) \in R[x]$. Suppose we define the function $\mathcal{R}(y) = \mathrm{Resultant}(f(x), y - g(x))$. Now, I think this function is valid because to compute this function, we need to calculate the determinant of the Sylvester matrix of $f(x), y - g(x)$ (assume $y$ like a constant).
My second question is: Can we prove that $f(x)$ divides $\mathcal{R}(g(x))$?
For example let $f(x) = f_0 + f_1 x + f_2 x^2, g(x) = g_{0} + g_{1}x$, then $~S = \begin{pmatrix}f_{0} & y - g_{0} & 0 \\f_{1} & - g_{1} & y - g_{0} \\f_{2} & 0 & - g_{1} \end{pmatrix}$ Then $\mathcal{R}(y) = \det(S)$ and $\mathcal{R}(g_{0} + g_{1}x) \\= \det \begin{pmatrix}f_{0} & g_{1}x & 0 \\f_{1} & - g_{1} & g_{1}x \\f_{2} & 0 & - g_{1} \end{pmatrix} \\= g_{1}^{2}(f_0 + f_1 x + f_2 x^2) \\= g_{1}^{2}f(x)$.
So $f(x)$ divides $\mathcal{R}(g(x))$, but $\mathcal{R}(g(x)) \neq 0$.
But I couldn't able to prove the general statement.