There is a longer integral for which integration by parts $\displaystyle\int udv=uv-\int vdu$ was attempted as it came across in research:
$$ \frac i{2\pi}\int_0^{2\pi}\underbrace{\ln\left(1+\frac{e^{-i t}+1}a\ln\left(1-\frac1be^{\frac{e^{it}+1}a}\right)\right)}_u \;d\bigg[\underbrace{\ln\left(e^\frac{e^{it}+1}c-b\right)}_v\bigg] \tag{0} $$
as it has the below problem, but here is a simpler one to better get the point across
$$ \frac1{2\pi}\int_0^{2\pi} \ln(e^{it}+a)\; d\left[\ln\left(e^{e^{it}}-2\right)\right] \tag{1} $$
Integrating $(1)$ by parts should give:
$$\frac1{2\pi}\int_0^{2\pi}\ln(e^{it}+a)
\;d\left[\ln\left(e^{e^{it}}-2\right)\right]
\\
= \underbrace{\left[\ln(e^{it}+a)\ln\left(e^{e^{it}}-2\right)\middle]\right|_0^{2\pi}}_\text{should equal zero when plugging in directly}-\frac1{2\pi}\int_0^{2\pi}\ln\left(e^{e^{it}}-2\right)
\;d\left[\ln(e^{it}+a)\right]
\ .
\tag2
$$
Directly substituting, we should get $\left[\ln(e^{it}+a)\ln\left(e^{e^{it}}-2\right)\middle]\right|_0^{2\pi} =0$. Checking numerically shows $(2)$ to be false.
However, instead, we numerically get $\ln(a-1)i$ instead of $0$:
$$ \frac1{2\pi}\int_0^{2\pi}\ln(e^{it}+a) \;d\left[\ln\left(e^{e^{it}}-2\right)\right] \\ =\ln(a-1)i -\frac1{2\pi}\int_0^{2\pi}\ln\left(e^{e^{it}}-2\right) d\left[\ln(e^{it}+a)\right] \tag{3} \ . $$
What is the correct way to find the extra $[uv]|_a^b$ term, like $\ln(a-1)i$ here?