Consider
$$f(x) = x+1+\dfrac{x+2+\dfrac{x+3+\dfrac{x+4+\cdots}{x+5+\cdots}}{x+4+\dfrac{x+5+\cdots}{x+6+\cdots}}} {x+3+\dfrac{x+4+\dfrac{x+5+\cdots}{x+6+\cdots}}{x+5+\dfrac{x+6+\cdots}{x+7+\cdots}}} $$
This implies
$$f(x) = x + 1 + \frac{f(x+1)}{f(x+2)}$$
And for large positive real $x$ , $f(x)$ is close to $x + 2$
We know the inequality for $f(0)$
$$\sqrt 3 > 1+\dfrac{2+\dfrac{3+\dfrac{4+\cdots}{5+\cdots}}{4+\dfrac{5+\cdots}{6+\cdots}}} {3+\dfrac{4+\dfrac{5+\cdots}{6+\cdots}}{5+\dfrac{6+\cdots}{7+\cdots}}} $$
See : Simplifying a complicated continued fraction expression.
What I wonder about is this
$f(t) = 0$
where $t$ is the largest solution.
** edit : with large(st) I mean the usual ordering of the reals ; so $-1$ is larger than $-2$ , not some kind of absolute value thing. Just to be clear. **
I estimate $t = - \frac{1 + \gamma }{2} $ or about $- 0,53860783245..$ but that is a very brute estimate.
Do we know a closed form for $t$ ?
edit
I found this :
Functional equation: $f(x)=x+\dfrac{f(2x)}{f(3x)}$
Maybe it relates ?
f[0, x_] := 1 + x; f[n_, x_] := 1 + x + f[n - 1, x + 1]/f[n - 1, x + 2]; Table[{NumberForm[ FindRoot[f[n, x], {x, -1.5}], 15]}, {n, 1, 15}]– Yimin Dec 23 '23 at 03:06-1.5185960265866827– Yimin Dec 23 '23 at 03:07I added it to the OP. Thanks for your interest.
– mick Dec 23 '23 at 12:02f[n,x]and following with the commandsgr0 = Plot[f[16, x], {x, -20, 5}];gr1 = Plot[x + 2, {x, -20, 5}, PlotStyle -> {Dashed, Red}]; Show[gr0, gr1]we will depict the function plot. It seems that-1.5185960265866827is the only real root. – Cesareo Dec 23 '23 at 13:08