Let $X$ a random variable, $\mathcal{A}$, $\mathcal{B}$, two $\sigma$-algebras such that $\sigma(X,\mathcal{A})$ is independent of $\mathcal{B}$.
Is it always true that $\mathbb{E}[X|\sigma(\mathcal{A}, \mathcal{B})]=\mathbb{E}[X|\mathcal{A}]$?
I can show it for $\mathcal{A}$, $\mathcal{B}$ finite algebras, but I do not know how to extend it to general sigma-algebras.