2

An ellipsoid with equation

$ (\mathbf{r} - \mathbf{r_0} )^T Q (\mathbf{r} - \mathbf{r_0} ) = 1 $

is subject to light rays from an omni-directional light (light source emitting light rays in all directions). The light source is located at $\mathbf{p_0}$.

I want to find a closed form expression for the area of the shadow of the ellipsoid onto the plane $\mathbf{n}^T (\mathbf{r} - \mathbf{r_1} ) = 0 $.

My attempt: is presented in my answer below.

enter image description here

1 Answers1

2

First, I'll outline the method I used to find the closed form expression of the area of the shadow.

Step 1: Transform the ellipsoid into a unit sphere centered at the origin. The cone of light becomes a right circular cone.

For this, diagonalize $Q$ as $Q = R D R^T $, and define

$ \mathbf{r'} = D^{1/2} R^T (\mathbf{r - r_0}) $

Then

$ \mathbf{r'}^T \mathbf{r'} = 1 $

is the unit sphere centered at the origin.

Step 2: Find the area of the shadow in the transformed coordinates $r'$ by intersecting the transformed plane with the right circular cone resulting from the transformation.

The transformed plane equation is

$ \mathbf{n}^T ( \mathbf{r_0} + R D^{-1/2} \mathbf{r'} - \mathbf{r_1} ) = 0 $

i.e.

$ \mathbf{n'}^T ( \mathbf{r'} - D^{1/2} R ( \mathbf{r_1 - r_0} ) ) = 0 $

where $\mathbf{n'} = D^{-1/2} R^T \mathbf{n} $

The semi-vertical angle of the right circular cone is given by

$ \sin \theta = \dfrac{1}{\| \mathbf{p_0'} \| } $

where

$ \mathbf{p_0'} = D^{1/2} R^T (\mathbf{p_0 - r_0}) $

At this point, define $\mathbf{v} = \mathbf{p_0} - \mathbf{r_0} $ and $\mathbf{ w }= \mathbf{p_0} - \mathbf{r_1} $

$ \sin \theta = \dfrac{1}{\sqrt{ \mathbf{(p_0 - r_0)}^T Q \mathbf{(p_0 - r_0)} } } = \dfrac{1}{\sqrt{ \mathbf{v}^T Q \mathbf{v}} } $

The ellipse of the intersection between the (transormed) right circular cone of line and the transformed plane has it semi-axes as follows

$ a= \dfrac{ z_0 \tan \theta \cos \phi }{ (1 - \sin^2 \phi \sec^2 \theta) } $

$ b = \dfrac{ z_0 \tan \theta \cos \phi }{ (1 - \sin^2 \phi \sec^2 \theta )^{1/2} } $

where $\phi$ is the angle between the axis the right circular cone and the normal vector to the transformed plane $( \mathbf{n'} )$. These formulas are derived here. Therefore, the area is

$ A' = \pi a b = \pi \dfrac{ (z_0 \cos \phi)^2 \tan^2 \theta }{ (1 - \sin^2 \phi \sec^2 \theta)^{3/2}} $

Equivalently, this is equal to

$ A' = \pi \dfrac{ (z_0 \cos \phi)^2 \sin^2 \theta \cos \theta }{ (\cos^2 \theta - \sin^2 \phi)^{3/2}} = \pi \dfrac{ (z_0 \cos \phi)^2 \sin^2 \theta \cos \theta }{ (\cos^2 \phi - \sin^2 \theta )^{3/2} } $

It can be shown that

$z_0^2 = \left( \dfrac{\mathbf{n}^T \mathbf{w} }{ \mathbf{n}^T \mathbf{v} } \right)^2 \mathbf{v}^T Q \mathbf{v} $

and

$ z_0 \cos \phi = \dfrac{ | \mathbf{n}^T (\mathbf{p_0 - r_1}) |}{\sqrt{\mathbf{n}^T Q^{-1} \mathbf{n} }} = \dfrac{ |\mathbf{n}^T \mathbf{w} | }{\sqrt{\mathbf{n}^T Q^{-1} \mathbf{n}}} $

So that

$ \sec^2 \phi = \dfrac{ (\mathbf{v}^T Q \mathbf{v}) (\mathbf{n}^T Q^{-1} \mathbf{n}) }{ (\mathbf{n}^T \mathbf{v})^2 } $

Substituting these expressions and simplifying gives

$ A' = \pi \dfrac{ \sqrt{ \mathbf{n}^T Q^{-1} \mathbf{n}} (\mathbf{n}^T \mathbf{w} )^2 \sqrt{ \mathbf{v}^T Q \mathbf{v} - 1 } } { \left( (\mathbf{n}^T \mathbf{v})^2 - \mathbf{n}^T Q^{-1} \mathbf{n} \right)^{3/2} } $

Step 3: Now the volume of the right circular cone is

$ V' = \dfrac{1}{3} A' h' $ where $ h' = z_0 \cos \phi $

i.e.

$ V' = \dfrac{\pi}{3} \dfrac{ (\mathbf{n}^T \mathbf{w} )^3 \sqrt{ \mathbf{v}^T Q \mathbf{v} - 1 } } { \left( (\mathbf{n}^T \mathbf{v})^2 - \mathbf{n}^T Q^{-1} \mathbf{n} \right)^{3/2} } $

Step 4: The volume of the original cone is

$ V = \dfrac{V}{\sqrt{\det{Q}}} $

i.e.

$ V = \dfrac{\pi}{3} \dfrac{ (\mathbf{n}^T \mathbf{w} )^3 \sqrt{ \mathbf{v}^T Q \mathbf{v} - 1 } } {\sqrt{\det{Q}} \left( (\mathbf{n}^T \mathbf{v})^2 - \mathbf{n}^T Q^{-1} \mathbf{n} \right)^{3/2} } $

Step 5: To find the actual area of the shadow, use

$ A = \dfrac{3 V}{h}$

where $ h $ is the altitude and is given by $ h = \mathbf{n}^T \mathbf{w} $

This gives

$ A_{\text{shadow}} = \pi \dfrac{( \mathbf{n}^T \mathbf{w} )^2 \sqrt{ \mathbf{v}^T Q \mathbf{v} - 1 }} { \sqrt{\det(Q)} ( (\mathbf{n}^T \mathbf{v} )^2 - \mathbf{n}^T Q^{-1} \mathbf{n} )^{(3/2)}} $