Introduction. I found the following definitions of the total variation distance $d_{TV}$ between two probability distributions (also called probability measures) $P$ and $Q$ on $\mathcal{A}$ (please note that I tried to use a consistent notation in the following definitions!):
\begin{align} &{\color{blue}{\textbf{"Definition 2.4" on page 84, in Tsybakov (2009)}}} \\&\hspace{10ex} d_{TV}(P,Q) = \sup_{A \in \mathcal{A}} \left| P(A)-Q(A) \right| = \sup_{A \in \mathcal{A}} \left| \int_{A} (p-q)d\nu \,\right| \\ \\ &{\color{blue}{\textbf{"2.1 Definition" on page 5, in Strasser (1985)}}} \\&\hspace{10ex}d_{TV}(P,Q) = \left\Vert P-Q\right\Vert = \sup \{\left| P(A)-Q(A) \right| : {A \in \mathcal{A}} \} \\ \\ &{\color{blue}{\textbf{"4.1. Total Variation Distance" on page 47, in Levin&Peres (2017)}}} \\&\hspace{10ex}d_{TV}(P,Q) = \left\Vert P-Q\right\Vert = \max_{A \subseteq \mathcal{A}} \left| P(A)-Q(A) \right| \\ \\ &{\color{blue}{\textbf{On page 22, in Villani (2008)}}}\\&\hspace{10ex}d_{TV}(P,Q) = \left\Vert P-Q\right\Vert = 2 \inf \left\{ \mathbb{E} [\mathcal{1}_{X \neq Y}]; \,\text{law}(X)=P, \text{law}(Y)=Q \right\} \\ \end{align}
Question. Since I got confusions on the variety of definitions of the total variation distance, could you please show/prove/derive one, or more (or all!), of the following equalities? Or suggest some references proving those equalities?
\begin{align} &{\color{red}{\textbf{First Equality:}}} \qquad &&\sup_{A \in \mathcal{A}} \left| P(A)-Q(A) \right| \stackrel{\bf{{\color{red}?}}}{=} \sup_{A \in \mathcal{A}} \left| \int_{A} (p-q)d\nu \,\right| \\ \\ &{\color{red}{\textbf{Second Equality:}}} \qquad &&\left\Vert P-Q\right\Vert \stackrel{\bf{{\color{red}?}}}{=} \sup \{\left| P(A)-Q(A) \right| : {A \in \mathcal{A}} \} \\ \\ &{\color{red}{\textbf{Third Equality:}}} \qquad &&\left\Vert P-Q\right\Vert \stackrel{\bf{{\color{red}?}}}{=} \max_{A \subseteq \mathcal{A}} \left| P(A)-Q(A) \right| \\ \\ &{\color{red}{\textbf{Fourth Equality:}}} \qquad &&\left\Vert P-Q\right\Vert \stackrel{\bf{{\color{red}?}}}{=} 2 \inf \left\{ \mathbb{E} [\mathcal{1}_{X \neq Y}]; \,\text{law}(X)=P, \text{law}(Y)=Q \right\} \\ \end{align}
References.