Context:
Reading this interesting paper: (https://arxiv.org/pdf/1607.04742.pdf) ("Special values of Gauss’s hypergeometric series derived from Appell’s series F1 with closed forms" by Akihito Ebisu). We find that the author obtains a lot of values of Gauss Hypergeometric function with a new approach. In particular we have: $$\sum_{n=0}^{\infty}\frac{(3n)!(2n)!(-1)^n}{n!^5}\left(\frac{1}{8640} \right)^n=\frac{9\cdot 5^{2/3}\cdot\Gamma(1/3)^6}{100\pi^4},\tag{1}$$ $$\sum_{n=0}^{\infty}\frac{(4n)!(-1)^n}{n!^4}\left(\frac{1}{6635520} \right)^n=\frac{3\cdot 5^{1/4}\cdot\Gamma(1/4)^4}{25 \pi^3}.\tag{2}$$
Guillera obtains values of Gauss Hypergeometric function with the WZ method: (https://arxiv.org/pdf/2001.08104.pdf), and then with Clausen's formula deduces some Ramanujan series for $1/\pi$.
Updated Level 3:
From the comments of Tito Piezas III we are going to give the transformation that allows us to obtain (1) using Ebisu's values. We take this version of Clausen's formula: $$\left(\sum_{n=0}^{\infty}\frac{f(a)f(b)}{f(2b)n!}x^n\right)^2=(1-x)^{-a}\sum_{n=0}^{\infty}\frac{f(a)f(b)f(2b-a)}{f(b+1/2)f(2b)n!}\left(\frac{x^2}{4(x-1)} \right)^n\tag{3}$$ Where $f(x)=\frac{\Gamma{(x+n)}}{\Gamma{(x)}}=(x)_{n},$ is the Pochhammer symbol. Setting $a=1/3$ and $b=1/2$ in $(3)$ we have:
$$_2F_1\left(\frac{1}{3},\frac{1}{2};1;x\right)^2=\frac{1}{(1-x)^{1/3}}\sum_{n=0}^{\infty}\frac{(2n)!(3n)!}{n!^5}\left(\frac{x^2}{432(x-1)}\right)^{n}\tag{4}$$
Equivalently,
$$(1-x)^{1/3}\,_2F_1\left(\frac{1}{3},\frac{1}{2};1;x\right)^2= \,_3F_2\big(\tfrac{1}{3},\tfrac{2}{3},\tfrac{1}{2};1,1;108z\big) =\sum_{n=0}^{\infty}\frac{(2n)!(3n)!}{n!^5} z^n\tag{5}$$
where $z=\dfrac{x^2}{432(x-1)}$, or solving for $x$,
$$x=12\Big(18z\pm\sqrt{3z(108z-1)}\Big)$$
Thus a single $z$ yields two $x$. For example,
Let $z=-\frac1{8640}$ from $(1)$ yields $x = \color{blue}{-\frac14,\frac15}$ so,
$$\small\left(1+\frac14\right)^{1/3}\,_2F_1\left(\frac{1}{3},\frac{1}{2};1;-\frac14\right)^2 = \left(1-\frac15\right)^{1/3}\,_2F_1\left(\frac{1}{3},\frac{1}{2};1;\frac15\right)^2 = \frac{3}{5^{4/3}}\times\frac{3\,\Gamma(1/3)^6}{4\pi^4}$$
Let $z=-\frac1{326592}$ from Piezas's answer yields $x = \color{blue}{-\frac1{27},\frac1{28}}$ so,
$$\small\left(1+\frac1{27}\right)^{1/3}\,_2F_1\left(\frac{1}{3},\frac{1}{2};1;-\frac1{27}\right)^2 = \left(1-\frac1{28}\right)^{1/3}\,_2F_1\left(\frac{1}{3},\frac{1}{2};1;\frac1{28}\right)^2 = \frac{9}{7^{5/3}}\times\frac{3\,\Gamma(1/3)^6}{4\pi^4}$$
Updated Level 2:
To obtain $(2)$, we again use $(3)$ and set $a=1/4$ and $b=1/2$ to get:
$$_2F_1\left(\frac{1}{4},\frac{1}{2};1;x\right)^2=\frac{1}{(1-x)^{1/4}}\sum_{n=0}^{\infty}\frac{(4n)!}{n!^4}\left(\frac{x^2}{1024(x-1)}\right)^{n}\tag{6}$$
Equivalently,
$$(1-x)^{1/4} _2F_1\left(\frac{1}{4},\frac{1}{2};1;x\right)^2= \,_3F_2\big(\tfrac{1}{4},\tfrac{3}{4},\tfrac{1}{2};1,1;256z\big)=\sum_{n=0}^{\infty}\frac{(4n)!}{n!^4}z^{n}\tag{7}$$
where $z=\dfrac{x^2}{1024(x-1)}$, or solving for $x$,
$$x=32\Big(16z\pm\sqrt{z(256z-1)}\Big)$$
So again a single $z$ yields two $x$. For example,
Let $z=-\frac{1}{12288}$ yields $x = \color{blue}{-\frac13,\frac14}$ so,
$$\small\left(1+\frac13\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;-\frac13\right)^2 = \left(1-\frac14\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;\frac14\right)^2 = \frac{2^{-1/2}}{\,3^{5/4}}\times\frac{\Gamma(1/4)^4}{\pi^3}$$
Let $z=-\frac{1}{6635520}$ yields $x = \color{blue}{-\frac1{80},\frac1{81}}$ so,
$$\small\left(1+\frac1{80}\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;-\frac1{80}\right)^2 = \left(1-\frac1{81}\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;\frac1{81}\right)^2 = \frac{3}{5^{7/4}}\times\frac{\Gamma(1/4)^4}{\pi^3}$$
Updated Level 2': Also:
Let $z=-\frac{1}{63^2}$ yields $x = \color{blue}{-\frac{32}{49},\frac{32}{81}}$,
$$A=\left(1+\frac{32}{49}\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;-\frac{32}{49}\right)^2 \tag{8}$$ $$B=\left(1-\frac{32}{81}\right)^{1/4}\,_2F_1\left(\frac{1}{4},\frac{1}{2};1;\,\frac{32}{81}\right)^2 \tag{9}$$
and both are equal to the $_3F_2$ series: $$A\,=\,B\,=\,\sum_{n=0}^{\infty}\frac{(-1)^n(4n)!}{63^{2n}n!^{4}}=\frac{3\cdot\Gamma{(1/7)}^2\Gamma{(2/7)}^2\Gamma{(4/7)}^2}{32\pi^{4}}\tag{10}.$$ With some effort one can show Ramanujan's series: $$\sum_{n=0}^{\infty}\frac{(-1)^n(65n+8)(4n)!}{63^{2n}n!^{4}}=\frac{9\sqrt{7}}{\pi}.\tag{11}$$
Question: So Akihito's method is less opaque than WZ method. Do you think that we can use his method and prove all the rational series known for $1/\pi$ ?
Reflections: This question can be misunderstood as to what the WZ method refers. I think this method is revolutionary and brilliant because it's "trivial" except for the fact when Carlson's theorem is needed. Also as Tito Piezas III has pointed, Jesús Guillera has proved series for $1/\pi^2$ using it and no other proofs are known till today. This method goes far beyond and deals with any hypergeometric series so you can see how magnificent it is.