Back in 2011, I empirically found the general family for this type of formulas. The OP was right when he compared them to the Chudnovsky algorithm which uses the j-function $j(\tau)$.
I. j-function
The first has $j\big(\frac{1+\sqrt{-27}}{2}\big) = -3\times160^3.$
The second has $j(\sqrt{-16}) = 2\sqrt2\,(273+180\sqrt2)^3(1+\sqrt2)^6.$
A third should be $j(\sqrt{-6}) = 12^3\,(5+2\sqrt2)^3(1+\sqrt2)^2.$
II. Watson triple integrals
Brown's formulas can be connected to the "Watson triple integrals". (He missed the third one though.) Let,
\begin{align}
I_1 &= \frac{1}{\pi^3} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \frac{dx \, dy \, dz}{1-\cos x \cos y \cos z}\\
I_2 &= \frac{1}{\pi^3} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \frac{dx \, dy \, dz}{3-\cos x \cos y -\cos x \cos z -\cos y \cos z}\\
I_3 &= \frac{1}{\pi^3} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \frac{dx \, dy \, dz}{3-\cos x -\cos y -\cos z}
\end{align}
then,
\begin{align}
\frac{4^{4/3}}{3^2}\color{red}{I_2} &= \frac 1{\sqrt{10}}\sum\limits_{k=0}^{\infty}\frac {(6k)!}{k!^3(3k)!}\frac {(-1)^k}{(3\cdot160^3)^k} = \frac {\Gamma\left(\tfrac 13\right)^6}{12\pi^4}\\
\frac{1}{2^5}\color{red}{I_1} &= \frac 1{\sqrt u}\sum\limits_{k=0}^{\infty}\frac {(6k)!}{k!^3(3k)!}\frac {1}{\big(2\sqrt2\,u^3\,(1+\sqrt2)^6\big)^k} = \frac {\Gamma\left(\tfrac 14\right)^4}{128\pi^3}\\
\frac{1}{2^{1/2}}I_3 &= \frac 1{\sqrt w}\sum\limits_{k=0}^{\infty}\frac {(6k)!}{k!^3(3k)!}\frac {1}{\big(12^3w^3\,(1+\sqrt2)^2\big)^k} = \frac {\Gamma\left(\tfrac 1{24}\right)\Gamma\left(\tfrac 5{24}\right)\Gamma\left(\tfrac 7{24}\right)\Gamma\left(\tfrac {11}{24}\right)}{32\sqrt3\,\pi^3}
\end{align}
where $u=273+180\sqrt2,$ and $w=5+2\sqrt2$.
III. Gamma functions
For the first, given $\tau = \big(\frac{1+\sqrt{-d}}{2}\big)$ where $d>3$, a general formula is the simple sum-product identity,
$$\frac1{\big({-j(\tau)}\big)^{1/6}}\sum_{n=0}^\infty \frac{(6n)!}{(3n)!(n!^3)} \frac1{\big(j(\tau)\big)^n} = \frac1{(2\pi)d}\prod_{m=1}^{d-1} \Big[\Gamma\big(\tfrac m d\big)\Big]^{\big(\frac{-d}{m}\big)}$$
where the gamma functions's exponent $\big(\frac{-d}{m}\big)$ is the Kronecker symbol. For example, let $d = 7$, so $j\big(\frac{1+\sqrt{-7}}{2}\big)=-15^3$. Thus,
$$\frac1{\big({15^3}\big)^{1/6}}\sum_{n=0}^\infty \frac{(6n)!}{(3n)!(n!^3)} \frac1{\big({-15^3}\big)^n} = \frac1{7(2\pi)}\frac{\Gamma\big(\tfrac17\big)\Gamma\big(\tfrac27\big)\Gamma\big(\tfrac47\big)}{\Gamma\big(\tfrac37\big)\Gamma\big(\tfrac57\big)\Gamma\big(\tfrac67\big)} $$
and so on.