Given a discrete-time stable, asymmetric matrix $A$ with maximum eigenvalue strictly less than one in absolute value and a vector $x$, is it necessarily true that $||A^t x|| \leq ||x||$ for all $t\geq 0$?
It is clearly true in the limits, since $A^0 x = x$ and $\lim_{t\rightarrow \infty} A^t = \mathbf 0$ by stability of $A$. But I am not sure if it is true in general for $ 0 < t < \infty$.
If not, is there another bound on the norm of $A^t x$?