For $x, y, z > 0$, prove that $$\sqrt{\dfrac{x}{\left(x+y\right)\left(1+y\right)}}+\sqrt{\dfrac{y}{\left(x+y\right)\left(1+x\right)}}+\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}>1.$$
I tried to use the AM-GM inequality as in the previous question $$\dfrac{x}{\sqrt{x\left(x+y\right)\left(1+y\right)}}+\dfrac{y}{\sqrt{y\left(x+y\right)\left(1+x\right)}}+\dfrac{xy}{\sqrt{xy\left(1+x\right)\left(1+y\right)}} \geq \dfrac{2x}{2x+xy+y+y^2}+\dfrac{2y}{2y+xy+x+x^2}+\dfrac{2xy}{1+x+y+2xy}=2 \cdot \left( \dfrac{x}{2x+xy+y+y^2}+\dfrac{y}{2y+xy+x+x^2}+\dfrac{xy}{1+x+y+2xy}\right).$$
The question again is it enough to prove the inequality this way?