Prove that for positive numbers x and y the inequality $$ \sqrt{\dfrac{1}{x+y}}+\sqrt{\dfrac{x}{1+y}}+\sqrt{\dfrac{y}{1+x}}>2$$ is true.
I tried to use the inequality $$\dfrac{1}{\sqrt{ab}} \geq \dfrac{2}{a+b}.$$
For example, the first fraction turns to $$\sqrt{\dfrac{1}{(x+y)1}} \geq \dfrac{2}{x+y+1}.$$
The second fraction turns to $$\sqrt{\dfrac{x}{(1+y)1}} \geq \dfrac{2x}{y+2}.$$
The third fraction turns to $$\sqrt{\dfrac{y}{(1+x)1}} \geq \dfrac{2y}{x+2}.$$
So we have $$ \sqrt{\dfrac{1}{x+y}}+\sqrt{\dfrac{x}{1+y}}+\sqrt{\dfrac{y}{1+x}} \geq \dfrac{2}{x+y+1}+\dfrac{2x}{2+y}+\dfrac{2y}{2+x} = 2 \left( \dfrac{1}{x+y+1}+\dfrac{x}{2+y}+\dfrac{y}{2+x}\right)>2.$$ Is it enough to prove that multiplying by 2, we get an expression greater than two?
Any hint would help a lot, Thanks!