Suppose that $f(x)>0$ is a continuously differentiable function defined on $x\ge 1$. Let $S$ be the surface of revolution of the graph $y=f(x)$ about $x-axis$. Let $E \subset R^3$ be the solid enclosed by $S$ and $x=1$. More precisely:$$E=\left \{ (x,y,z)\in R^3;x\ge 1 \space and \space \sqrt[]{y^2+z^2}\le f(x) \space for \space each \space x\ge 1 \right \}. $$ If the surface area of $S$ is finite, prove that the volume of $E$ must also be finite.
I have already known that the surface area of $S$ is... $$A=2\pi\int_{1}^{\infty }f(x) \sqrt[]{1+\left ( f'{(x)} ^2\right ) } dx =\lim_{b \to \infty}2\pi\int_{1}^{b} f(x) \sqrt[]{1+\left ( f'{(x)} ^2\right ) } dx$$ and the volume of $E$ is...$$V=\pi\int_{1}^{\infty } \left ( f(x) \right ) ^2dx=\lim_{b \to \infty } \pi\int_{1}^{b} \left ( f(x) \right ) ^2dx$$ Can I solve this question by the following?
$$\because \space f'(x) \space is \space continuous \space ,\space \therefore \exists M, \space \space such \space that \space f'(x)\ge M, \space \forall x\ge1$$ then $$A=\lim_{b \to \infty}2\pi\int_{1}^{b} f(x) \sqrt[]{1+\left ( f'{(x)} ^2\right ) } dx\ge \lim_{b \to \infty}2\pi\int_{1}^{b} f(x) \sqrt[]{1+M ^2 } dx = \lim_{b \to \infty}2\pi \sqrt[]{1+M ^2} \int_{1}^{b} f(x) dx$$ Since $A$ is finite, so $\lim_{b \to \infty}\int_{1}^{b} f(x) dx$ is also finite.......$(1)$
Also:$$\because \space f(x) \space is \space continuous \space ,\space \therefore \exists L\ge 0, \space \space such \space that \space f(x)\le L , \space \forall x\ge1$$
So...$$V=\lim_{b \to \infty } \pi\int_{1}^{b} \left ( f(x) \right ) ^2dx \le \lim_{b \to \infty } \pi\int_{1}^{b} L \times f(x) dx = \pi L \lim_{b \to \infty } \int_{1}^{b} f(x) dx ......(2)$$ Finally, because (1) tell me that $\lim_{b \to \infty}\int_{1}^{b} f(x) dx$ is finite, then I have (2) also finite?