Does the series $\sum_{1}^{\infty } \frac{\left ( -1 \right )^{n} }{n}e^{-\frac{x}{n} } $ converges uniformly on $\left [ 0,\infty \right )$? Prove or disprove it.
My first attempt is try to use Weierstrass M-test:$$\left |\frac{\left ( -1 \right )^{n} }{n}e^{-\frac{x}{n} } \right | =\frac{1}{n}e^{-\frac{x}{n} } =\frac{1}{ne^{\frac{x}{n}} }< \frac{1}{ne^{\frac{0}{n}} }=\frac{1}{n}......(1) $$ but unfortunately $\sum_{1}^{\infty } \frac{1}{n} $ is divergent, so (1) tell me nothing.
My second attempt is try to use Dirichlet test:$$\left | \sum_{n=1}^{k} \left ( -1 \right ) ^n \right | < 2 \qquad \forall x\in \left [0,\infty \right ) ...\space this \space condition \space is \space OK$$
Next assume $b(n)=\frac{e^{\frac{-x}{n}}}{n} $, then...$$b'{(n)} =\frac{ \left (e^{-\frac{x}{n}}\times \frac{x}{n^2}\times n \right ) - \left ( e^{-\frac{x}{n}}\times1 \right ) }{n^2}= \frac{e^{-\frac{x}{n}}\times \left ( \frac{x}{n}-1 \right ) }{n^2}$$ sadly, it seems not to decrease monotonically to zero, so this condition has failed.
What should I do in order to test the uniform convergence of this series on $\left [ 0,\infty \right )$?