So I was looking through the homepage of Youtube to see if there were any math problems that I thought that I might be able to solve (without a calculator/online resources) when I came across this video by Maths$505$ asking us to compute the value of the integral $$\color{black}{\int_{-\infty}^\infty\Gamma(1+ix)\Gamma(1-ix)dx}$$which I thought that I might be able to do without using any online resources or a calculator. Here is my attempt at computing the value of the aforementioned integral:$\color{white}{\require{cancel}{.}}$ $$\int_{-\infty}^\infty\Gamma(1+ix)\Gamma(1-ix)dx$$
$$\int_{-\infty}^\infty(ix)!(-ix)!dx$$
$$\text{Which can also be rewritten as }\int_{-\infty}^\infty ix\Gamma(ix)\Gamma(1-ix)dx$$
$$\text{Which can then be simplified as }\int_{-\infty}^\infty ix\pi\csc(\pi ix)dx$$$$\int_{-\infty}^\infty\dfrac{ix\pi}{\sin(\pi ix)}dx$$$$\int_{-\infty}^\infty\dfrac{\cancel{i}x\pi}{\cancel{i}\sinh(\pi x)}dx$$$$\pi\int_{-\infty}^\infty\dfrac{x\text{ }dx}{\sinh(\pi x)}$$$$\text{Since I know that }\sinh(z)\text{ is equal to }\dfrac{e^z-e^{-z}}{2}$$$$\pi\int_{-\infty}^\infty\dfrac{2x\text{ }dx}{e^{\pi x}-e^{-\pi x}}$$$$\text{Or }2\pi\int_{-\infty}^\infty\dfrac{x\text{ }dx}{e^{\pi x}-e^{-\pi x}}$$$$\text{Since I know that when you integrate with }e\text{ that means that }f(x)=f(-x)$$$$\text{That means we can rewrite the integral as}$$$$4\pi\int_0^\infty\dfrac{x}{e^{\pi x}-e^{-\pi x}}dx$$$$\text{Now to expand with }e$$$$4\pi\int_0^\infty\dfrac{xe^{-\pi x}}{e^{-\pi x}(e^{\pi x}-e^{-\pi x})}dx$$$$4\pi\int_0^\infty\dfrac{xe^{-\pi x}}{1-e^{-2\pi x}}dx$$$$\text{Which we can rewrite as }\sum_{k\geq0}e^{-2\pi kx}$$$$\text{Plugging this back into the integral gets us}$$$$4\pi\int_0^\infty xe^{-\pi x}\sum_{k\geq0}e^{-2\pi kx}dx$$$$\text{Or }4\pi\int_0^\infty\sum_{k\geq0}xe^{-(2k+1)\pi x}dx$$$$\text{Which can also be rewritten as }4\pi\sum_{k\geq0}\int_0^\infty xe^{-(2k+1)\pi x}dx$$$$\text{Now, substituting }-(2k+1)\pi x\text{ for }t\text{ (}t\text{-substitution)}$$$$4\pi\sum_{k\geq0}\int_0^\infty xe^tdx$$$$\text{Which should be rewritten as (to avoid getting stuck in an infinite loop of nothingness)}$$$$dx=\dfrac{dt}{(2k+1)\pi}$$$$4\pi\sum_{k\geq0}\int_0^\infty\dfrac{t}{(2k+1)\pi}-e^{-t}\dfrac{dt}{(2k+1)\pi}$$$$\text{Or }4\pi\sum_{k\geq0}\int_0^\infty\dfrac{1}{(2k+1)^2\pi^2}te^{-t}dt$$Now, to integrate:$$\dfrac{4}{\pi}\sum_{k\geq0}\dfrac{1}{(2k+1)^2}\int_0^\infty te^{-t}dt$$$$\dfrac{4}{\pi}\sum_{k\geq0}\dfrac{1}{(2k+1)^2}$$$$\text{Now to take the right hand and left hand sums}$$$$\dfrac{1}{4}\sum_{k\geq1}\dfrac{1}{(2k)^2}+\sum_{u\geq0}\dfrac{1}{(2n+1)^2}$$$$\dfrac{\pi^2}{24}+S=\dfrac{\pi^2}{6}$$$$S=\dfrac{4\pi^2-\pi^2}{24}=\dfrac{3\pi^2}{24}=\dfrac{\pi^2}{8}$$$$\therefore\text{ }\int_{-\infty}^\infty\Gamma(1+ix)\Gamma(1-ix)dx=\dfrac{\pi^2}{8}$$
My question
Is my solution correct, or what could I do to attain the correct solution/attain it more easily?
$$\color{white}{\small\text{(link to picture of proof)}}$$
Mistakes I might have made
- Any point where I simplify the integral
- Any point where I converted the integral to a sum
- Calculating the value of the sums
