In Dummit's Abstract Algebra on page65 exercise16(c), there is a proposition "If $G=\langle x\rangle$ is a cyclic group of order $n\geq1$ then a subgroup $H$ is maximal if and only if $H=\langle x^p\rangle$ for some prime $p$ dividing $n$ ."
But I find that for a composite $k$ not dividing $n$ , $\langle x^k\rangle$ may be also maximal although $k$ is neither prime nor divding $n$ .
For instance, let $G=\langle x\rangle$ be a cyclic group of order $10$ ,then $|\langle x^6\rangle|=\frac{10}{\gcd(6,10)}=5$ implies that $\langle x^6\rangle$ is a maximal subgroup of $G$ since there does not exist a composite $c$ s.t. $|\langle x^6\rangle|=5c=10=|\langle x\rangle|$ .
So whether this propositon is correct? Or if we should restrict $k$ to be the smallest integer in $\langle x^k\rangle$ ?