Let $ V $ be an finite-dimensional inner product space over $ \mathbb{C} $.
Let $ T : V \to V $ be a linear transformation and assume that for every $ v $, $ \lVert Tv \rVert =\lVert T^*v\rVert$. I want to prove that $ T $ is a normal transformation.
My effort:
Suppose, to the contrary, that $ T $ is not normal and therefore there exists a $ \vec{u} $ such that $ TT^*(\vec{u}) \neq T^*T(\vec{u}) $.
$ \lVert Tv\rVert^2= \langle Tv, Tv \rangle = \langle v, T^*Tv\rangle$
$ \lVert T^*v \rVert^2=\langle T^*v, T^*v\rangle=\langle v, TT^*v\rangle$
which means $ \lVert Tv\rVert^2 - \lVert T^*v \rVert^2==\langle v, (T^*Tv -TT^*v) \rangle$
I now want to show that $ T^*Tv- TT^*v \not \perp u $, but I don't really know how? Could you give me a $ \textbf{hint} $?