Theorem
The rotation by $\theta$ function $T:\mathbb{R}^2 \to \mathbb{R}^2$ defined for $\vec{x}%=\begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix}r\cos(\alpha) \\ r\sin(\alpha)\end{bmatrix}$ by \begin{align*} T(\vec{x}) = \begin{bmatrix} r\cos(\alpha+\theta) \\ r\sin(\alpha+\theta) \end{bmatrix} \end{align*} is a linear function.
Proof
First we show $T(c\vec{a}) = cT(\vec{a})$:
\begin{align*} T(c \vec{a}) &=T\left(c \begin{bmatrix} r \cos(\alpha) \\ r \sin(\alpha) \end{bmatrix}\right) \\ &=T(\begin{bmatrix} cr \cos(\alpha) \\ cr \sin(\alpha) \end{bmatrix}) \\ &=\begin{bmatrix} cr \cos(\alpha+\theta) \\ cr \sin(\alpha+\theta) \end{bmatrix} \\ &=c\begin{bmatrix} r \cos(\alpha+\theta) \\ r \sin(\alpha+\theta) \end{bmatrix} \\ &=c T\left(\begin{bmatrix} r \cos (\alpha) \\ r \sin (\alpha) \end{bmatrix}\right) \\ &=c T(\vec{a}) \end{align*}
Next, we show $T(\vec{a}+\vec{b}) = T(\vec{a})+T(\vec{b})$:
\begin{align} T \left(\vec{a}+\vec{b}\right) &= T\left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} +\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}\right)\\ &= T\left(\begin{bmatrix} r \cos(\alpha) \\ r \sin(\alpha) \end{bmatrix} +\begin{bmatrix} s \cos(\beta) \\ s \sin (\beta) \end{bmatrix}\right)\\ &=T\left(\begin{bmatrix} r \cos(\alpha) + s \cos(\beta) \\ r \sin(\alpha) + s \sin (\beta) \end{bmatrix}\right)\\ & \ \ \vdots \\ & \ \ \vdots \\ &=\begin{bmatrix} r \cos(\alpha + \theta) \\ r \sin (\alpha + \theta) \end{bmatrix} + \begin{bmatrix} s \cos (\beta + \theta) \\ s \sin (\beta + \theta) \end{bmatrix}\\ &=T\left(\begin{bmatrix} r \cos(\alpha) \\ r \sin (\alpha) \end{bmatrix}\right) + T\left(\begin{bmatrix} s \cos (\beta) \\ s \sin (\beta) \end{bmatrix}\right)\\ &=T(\vec{a})+T(\vec{b}) \end{align}
I was able to successfully prove part (1), but am having trouble with part (2). I have checked some resources, including
- "Linear combinations" section of Wikipedia's List of Trig Identities
- "Addition" section of Wikipedia's article on Phasors,
- Trigonometric Identities Like $A \sin(x) + B \cos(y) = \cdots$
- Identity for a weighted sum of sines / sines with different amplitudes
in order to combine
\begin{align*} &r \cos(\alpha) + s \cos(\beta), \\ &r \sin(\alpha) + s \sin(\beta) \end{align*}
Could anyone help flesh out the missing steps of this proof?
Note I know this transformation can be expressed as multiplication by the matrix $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta)\end{bmatrix}$, and all matrix multiplications are linear, but I would like to avoid this approach and show the missing steps directly using trig identities.