I think this proof of induction should have a previous lemma similar to the following:
Lemma Let $a/b$ and $c/d$ reduced fractions where all $a,b,c,d$ are rational numbers and such that $a/b < c/d$. Let $e/f$ be a reduced fraction such that $a/b < e/f$ and $c/d < e/f$. Then,
\begin{equation}
\frac{a}{b} \oplus \frac{e}{f} \le \frac{c}{d} \oplus \frac{e}{f},
\end{equation}
where $u/v \oplus w/x = (u + w)/(v + x)$.
If this was true, then I think we can easily solve the induction step. Now follows a sketch of the proof.
Assume that the inequality
\begin{equation}
\frac{a_1}{b_1}
\le
\frac{a_1 + \dots + a_k}{b_1 + \dots + b_k}
\le
\frac{a_k}{b_k}
\end{equation}
holds for all $k\in[1,n]$. Now, does it still hold for $k+1$? Now we apply the lemma above to the inequality by using $a_{k+1}/b_{k+1}$ which, as per your formulation, we have that
\begin{equation}
\frac{a_1}{b_1} \le \frac{a_{k+1}}{b_{k+1}}, \qquad
\frac{a_k}{b_k} \le \frac{a_{k+1}}{b_{k+1}}
\end{equation}
Then, if we use the summation of the mediant of the fractions
\begin{equation}
\frac{a_1}{b_1} \oplus \frac{a_{k+1}}{b_{k+1}}
\le
\frac{a_1 + \dots + a_k}{b_1 + \dots + b_k} \oplus \frac{a_{k+1}}{b_{k+1}}
\le
\frac{a_k}{b_k} \oplus \frac{a_{k+1}}{b_{k+1}}.
\end{equation}
Finally, operate the fractions with $\oplus$,
\begin{equation}
\frac{a_1 + a_{k+1}}{b_1 + b_{k+1}}
\le
\frac{a_1 + \dots + a_k + a_{k+1}}{b_1 + \dots + b_k + b_{k+1}}
\le
\frac{a_k + a_{k+1}}{b_k + b_{k+1}}
\end{equation}
and apply the base case ($n=2$) to the left and right terms of the inequality using the assumption that $a_1/b_1 < a_2/b_2 < \dots < a_k/b_k < a_{k+1}/b_{k+1}$:
\begin{equation}
\frac{a_1}{b_1}
\le
\frac{a_1 + a_{k+1}}{b_1 + b_{k+1}}
\le
\frac{a_1 + \dots + a_k + a_{k+1}}{b_1 + \dots + b_k + b_{k+1}}
\le
\frac{a_k + a_{k+1}}{b_k + b_{k+1}}
\le
\frac{a_{k+1}}{b_{k+1}}.
\end{equation}
This concludes the proof.