I'm currently working on solving an equation that involves a symmetric matrix C with 4 unknown variables, and a vector A of the same dimension. The equation I'm trying to solve is:
[C]*{A}=0 (1)
where * denotes matrix multiplication and { } denotes a vector.
The dimension of the C matrix can be as large as 100x100 or more, and I'm trying to define the unknown variables in C in a way that solves equation (1). One approach I've tried is to calculate the determinant of C, |[C]|=0, and solve for the 4 different variables inside.
However, when the dimension of the matrix is large, my current method in Mathematica is not able to solve the problem. I'm wondering if anyone has any suggestions for me to solve this equation more efficiently.
I'm open to using other programming languages such as Matlab or Python as well. Any suggestions or advice would be greatly appreciated.
Thank you in advance for your help and guidance.
I have tried solving this problem with 25*25 dimensions. However, this size is not enough for the precision that I want for the variables.