In an attempt of proving
\begin{align*} \sum_{n=-\infty}^\infty \frac{1}{\cosh^2(\pi n )}=\frac{1}{\pi}+\frac{\Gamma^4\left( \frac14\right)}{8 \pi^3} \tag{1} \end{align*}
I found the following relationship between theta functions and their derivatives which could help me evaluate $(1)$, but I don´t know how to prove it.
\begin{align*} \frac{\vartheta_3^\prime(e^{-s \pi})}{\vartheta_3(e^{-s \pi})}-\frac{\vartheta_2^\prime(e^{-s \pi})}{\vartheta_2(e^{-s \pi})}=\frac{\pi}{4}\vartheta_4^4(e^{-s \pi}) \end{align*}
Backgroud: To prove $(1)$ I started by the following equality:
\begin{align*} \vartheta_2(q)=2 q^{1/4}\prod_{n=1}^\infty (1-q^{2n})(1+q^{2n})^2 \tag{2} \end{align*}
Proof:
Recall Jacobi´s triple product
\begin{align*} \sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n}&=\prod_{n=1}^{\infty}\left(1+z q^{2 n-1}\right)\left(1+z^{-1} q^{2 n-1}\right)\left(1-q^{2 n}\right) \end{align*}
The letting $z=q$ in the equation above we get
\begin{align*} \sum_{n=-\infty}^{\infty} q^{n^{2}} q^{n}&=\sum_{n=-\infty}^{\infty} q^{n^{2}+n+\frac{1}{4}-\frac{1}{4}}\\ &=q^{-1/4}\sum_{n=-\infty}^{\infty} q^{(n+1/2)^2}\\ &= \prod_{n=1}^{\infty}\left(1+q q^{2 n-1}\right)\left(1+q^{-1} q^{2 n-1}\right)\left(1-q^{2 n}\right)\\ &= \prod_{n=1}^{\infty}\left(1+ q^{2 n}\right)\left(1+ q^{2 n-2}\right)\left(1-q^{2 n}\right)\\ &= \prod_{n=1}^{\infty}\left(1+ q^{2 n-2}\right)\prod_{n=1}^{\infty}\left(1+ q^{2 n}\right)\left(1-q^{2 n}\right)\\ &= 2\left(1+ q^{2}\right)\left(1+ q^{4}\right)\left(1+ q^{6}\right)\cdots\prod_{n=1}^{\infty}\left(1+ q^{2 n}\right)\left(1-q^{2 n}\right)\\ &=2 \prod_{n=1}^{\infty}\left(1+ q^{2 n}\right)\prod_{n=1}^{\infty}\left(1+ q^{2 n}\right)\left(1-q^{2 n}\right)\\ &=2 \prod_{n=1}^\infty (1-q^{2n})(1+q^{2n})^2 \end{align*}
Now rewrite $(2)$ as
\begin{align*} \frac{\vartheta_2(q)}{2 q^{1/4}}&=\prod_{n=1}^\infty (1-q^{2n})(1+q^{2n})^2 \\ &=\prod_{n=1}^\infty (1-q^{4n})(1+q^{2n})\\ &=\prod_{n=1}^\infty (1-q^{4n})(1+q^{2n})\cdot \frac{(1-q^{2n})}{(1-q^{2n})}\\ &=\prod_{n=1}^\infty\frac{(1-q^{4n})^2}{(1-q^{2n})} \tag{3} \end{align*}
Thus taking logarithms on both sides of $(3)$ gives
\begin{align*} \ln \vartheta_2(q)-\ln 2 ~\frac14\ln q &=2\sum_{n=1}^\infty\ln (1-q^{4n}) -\sum_{n=1}^\infty\ln(1-q^{2n})\\ &=\sum_{n=1}^\infty \sum_{k=1}^\infty \frac{q^{2nk}}{k}-2 \sum_{n=1}^\infty \sum_{k=1}^\infty \frac{q^{4nk}}{k} \\ &=\sum_{k=1}^\infty \sum_{n=0}^\infty \frac{q^{2k(n+1)}}{k}-2 \sum_{k=1}^\infty \sum_{n=0}^\infty \frac{q^{4k(n+1)}}{k} \\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{q^{2k}}{1-q^{2k}}-2\sum_{k=1}^\infty \frac{1}{k}\frac{q^{4k}}{1-q^{4k}}\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{q^{2k}}{1-q^{2k}}-2\sum_{k=1}^\infty \frac{1}{k}\frac{q^{4k}}{(1-q^{2k})(1+q^{2k})}\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{1}{1-q^{2k}}\left[q^{2k}-\frac{2q^{4k}}{1+q^{2k}} \right]\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{1}{1-q^{2k}}\left[\frac{q^{2k}+q^{4k}-2q^{4k}}{1+q^{2k}} \right]\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{1}{1-q^{2k}}\left[\frac{q^{2k}}{1+q^{2k}(1-q^{2k})} \right]\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{q^{2k}}{1+q^{2k}}\\ &=\sum_{k=1}^\infty \frac{1}{k}\frac{1}{1+q^{-2k}} \end{align*}
For $q=e^{-s \pi}$ we obtain
\begin{align*} \ln \vartheta_2\left(e^{-s \pi}\right)-\ln 2 +\frac{\pi s}{4}&=\sum_{n=1}^\infty \frac{1}{n}\frac{1}{e^{2 \pi s n}+1} \nonumber\\ &=\frac{1}{2}\sum_{n=1}^\infty \frac{1-\tanh(n \pi s)}{n} \tag{4} \end{align*}
Now differentiate $(4)$ w.r.t. to $s$ to obtain
\begin{align*} \sum_{n=1}^\infty \frac{1}{\cosh^2(n \pi s)} &=-\frac{1}{2}-\frac{2}{\pi}\frac{\vartheta_2^\prime\left(e^{-s \pi}\right)}{\vartheta_2\left(e^{-s \pi}\right)} \end{align*}
By differentiating both sides of the functional equation of $\vartheta_3$ w.r.t. $t$
\begin{align*} \sqrt{t} \sum_{n=-\infty}^\infty e^{-\pi t n^2}&=\sum_{n=-\infty}^\infty e^{-\frac{\pi n^2}{t} } \end{align*}
I obtained
\begin{align*} \frac{1}{2\sqrt{t}}\sum_{n=-\infty}^\infty e^{-\pi t n^2}-\sqrt{t}\sum_{n=-\infty}^\infty n^2 e^{-\pi t n^2}&= \frac{\pi}{t^2}\sum_{n=-\infty}^\infty n^2e^{-\frac{\pi n^2}{t} } \end{align*}
Letting $t \to 1$
\begin{align*} \sum_{n=-\infty}^\infty n^2 e^{-\pi n^2 } &=\frac{1}{4 \pi} \sum_{n=-\infty}^\infty e^{-\pi n^2 } \tag{5} \end{align*}
Now recall that
\begin{align*} \sum_{n=-\infty}^\infty e^{-\pi n^2 } &=\frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34 \right)} \end{align*}
Plugging these result in $(5)$ we conclude that
\begin{align*} \sum_{n=-\infty}^\infty n^2 e^{-\pi n^2 } &=\frac{1}{4\pi^{3/4}\Gamma\left(\frac34 \right)} \end{align*}
But the same technique fails when trying to evaluate the derivative of $\vartheta_2$. The functional equation
\begin{align*} \sqrt{t} \sum_{n=-\infty}^\infty (-1)^n e^{-\pi t n^2}&=\sum_{n=-\infty}^\infty e^{-\frac{\pi }{t}\left(n+\frac12\right)^2 } \end{align*}
when differentaited w.r.t. to $t$ ends up having a relation between $\vartheta_2$ and the derivatives of $\vartheta_2$ and $\vartheta_4$, and I dont know how to evaluate neither derivatives.
NOTE: Equation $(4)$ can be written in the alternative form
\begin{align*} \frac{1}{2}\sum_{n=1}^\infty \frac{1-\tanh(n \pi s)}{n}&=\ln \vartheta_2\left(e^{-s \pi}\right)-\ln 2 +\frac{\pi s}{4} \\ &=\ln \frac{\vartheta_2\left(e^{-s \pi}\right)\vartheta_3\left(e^{-s \pi}\right)}{\vartheta_3\left(e^{-s \pi}\right)}-\ln 2 +\frac{\pi s}{4}\\ &=\ln \left(\sqrt{k}\sqrt{\frac{2 \operatorname{K}(k)}{\pi}}\right)-\ln 2 +\frac{\pi s}{4} \\ &=\frac12\ln \left(\frac{2 k \operatorname{K}(k)}{2\pi}\right) +\frac{\pi s}{4} \end{align*}