I managed to prove the following identity
For $x=\frac{\pi u}{2K}$, $$\left(\frac{2K}{\pi \text{sn}(u,k)}\right)^2=\frac{1}{\sin^2 x}+\text{cnst.}-8\sum_{k=1}^{\infty}\frac{k q^{2k}}{1-q^{2k}}\cos(2kx)\tag{1}$$
and was able to solve the question.
Preliminary remark: I started with the Fourier series
$$\frac{2K}{\pi \text{sn}(u,k)}=\frac{1}{\sin x}+4\sum_{n=0}^{\infty}\frac{q^{2n+1}\sin((2n+1)x)}{1-q^{2n+1}}\tag{2}$$
This can be shown by recognizing the poles and residues to obtain the Mittag-Leffler pole expansion of $$\frac{1}{\text{sn}(u,k)}=\sum_{(n,m)\in\mathbb Z^2}\frac{(-1)^n}{u+2Kn+2iK'm}$$
Summing through $n$ gives $(2)$. With this, I squared both sides in $(2)$.
For simplicity, I will use the symbol
$$\eta_k=\sum_{n=0}^{k}\frac{q^{2n+1}}{1-q^{2n+1}}\quad , \quad \eta=\eta_\infty$$
Lemma 1 $$\sum_{m\geq 0}\frac{q^{4m+2+2k}}{(1-q^{2m+1})(1-q^{2m+2k+1})}=\frac{\eta_{k-1}}{1-q^{2k}}-\eta$$
Proof Applying partial fraction decomposition gives
$$\frac{q^{4m+2+2k}}{(1-q^{2m+1})(1-q^{2m+2k+1})}=\frac{q^{2k}}{1-q^{2k}}\left(\frac{q^{2n+1}}{1-q^{2n+1}}-\frac{q^{2n+1}}{1-q^{2n+2k+1}}\right)$$
Summing both sides gives
$$\sum_{m\geq 0}\frac{q^{4m+2+2k}}{(1-q^{2m+1})(1-q^{2m+2k+1})}=\frac{q^{2k}}{1-q^{2k}}(\eta-q^{-2k}(\eta-\eta_{k-1}))=\frac{\eta_{k-1}}{1-q^{2k}}-\eta$$
This completes the proof.
Lemma 2
$$\sum_{n=0}^{\infty}\frac{1}{(1-q^{2n+1})(1-q^{2k-2n-1})}=\frac{k+2\eta_{k-1}}{1-q^{2k}}$$
Proof The proof is similar to lemma 1 but this time the partial fraction is $$\frac{1}{(1-q^{2n+1})(1-q^{2k-2n-1})}=\frac{1}{1-q^{2k}}\left(\frac{1}{1-q^{2n+1}}+\frac{q^{2k-2n-1}}{1-q^{2k-2n-1}}\right)$$
We can now start the derivation, squaring $(2)$ gives
$$\left(\frac{2K}{\pi \text{sn}(u,k)}\right)^2=\frac{1}{\sin^2 x}+8\sum_{n=0}^{\infty}\frac{q^{2n+1}}{1-q^{2n+1}}\frac{\sin((2n+1)x)}{\sin x}+16\sum_{m,n=0}^{\infty}\frac{q^{2n+1}}{1-q^{2n+1}}\frac{q^{2m+1}}{1-q^{2m+1}}\sin((2n+1)x)\sin((2m+1)x)$$
$$=\frac{1}{\sin^2 x}+8S_1+16 S_2$$
We start with computing $S_1$,
$$\begin{split}S_1=& \sum_{n=0}\frac{q^{2n+1}}{1-q^{2n+1}}\frac{\sin((2n+1)x)}{\sin x} \\ = & \sum_{n=0}\frac{q^{2n+1}}{1-q^{2n+1}}\{1+2\cos(2x)+2\cos(4x)+\cdots+2\cos(2nx)\} \\ S_1= & \eta+2\cos(2x)(\eta-\eta_0)+2\cos(4x)(\eta-\eta_1)+\cdots\end{split}$$
So $S_1$ is solved, we now compute $S_2$. For simplicity, let $a_n=\frac{q^{2n+1}}{1-q^{2n+1}}$.
$$\begin{split}S_2=& \sum_{m,n=0}^{\infty}a_na_m\sin((2n+1)x)\sin((2m+1)x) \\ = & \frac{1}{2}\sum_{m,n\geq 0}a_na_m\{\cos(2(m-n)x)-\cos(2(m+n+1)x)\} \\= & \frac{1}{2}\sum_{k\geq 0}c_{2k}\cos(2kx)\end{split}$$
For $c_0$, it is $c_0=\sum_{n-0}^{\infty}\left(\frac{q^{2n+1}}{1-q^{2n+1}}\right)^2$, for $c_{2k}$, $k\geq 1$, we have to sum the cases for which the expression inside cos is $2kx$. That is,
$$\begin{split}c_{2k}=&\left(\sum_{n-m=k}+\sum_{m-n=k}-\sum_{n+m+1=k}\right)a_na_m\\ = & 2\sum_{m=0}^{\infty}a_m a_{k+m}-\sum_{n=0}^{k-1}a_na_{k-n-1} \\ = &2\sum_{m=0}^{\infty}\frac{q^{4m+2+2k}}{(1-q^{2m})(1-q^{2m+2k+1})}-q^{2k}\sum_{n=0}^{k-1}\frac{1}{(1-q^{2n+1})(1-q^{2k-2n-1})} \\ = & 2\left(\frac{\eta_{k-1}}{1-q^{2k}}-\eta\right)-\frac{q^{2k}}{1-q^{2k}}(k+2\eta_{k-1})\end{split}$$
where lemma 1 and 2 are used in the last step. We therefore obtain $$c_{2k}=2(\eta_{k-1}-\eta)-\frac{kq^{2k}}{1-q^{2k}}$$
With this, we have $$S_2=\frac{c_0}{2}+\sum_{k=1}^{\infty}(\eta_{k-1}-\eta)\cos(2kx)-\frac{1}{2}\sum_{k=1}^{\infty}\frac{kq^{2k}}{1-q^{2k}}\cos(2kx)$$
Putting back in the original expression
$$\left(\frac{2K}{\pi\text{sn}(u,k)}\right)^2=\frac{1}{\sin^2 x}+8\left(\eta+2\sum_{n=1}^{\infty}(\eta-\eta_{n-1})\cos(2nx)\right)+16 \left(\frac{c_0}{2}+\sum_{k=1}^{\infty}(\eta_{k-1}-\eta)\cos(2kx)-\frac{1}{2}\sum_{k=1}^{\infty}\frac{kq^{2k}}{1-q^{2k}}\cos(2kx)\right)$$
$$\left(\frac{2K}{\pi\text{sn}(u,k)}\right)^2=\frac{1}{\sin^2 x}+8(c_0+\eta)-8\sum_{k=1}^{\infty}\frac{kq^{2k}}{1-q^{2k}}\cos(2kx)$$
So $(1)$ is proved. By applying the Taylor seires of both sides we have
$$\frac{1}{x^2}+\frac{1+k^2}{3}\left(\frac{2K}{\pi}\right)^2+\frac{1-k^2+k^4}{15}\left(\frac{2K}{\pi}\right)^4 x^2+\cdots$$
$$=\frac{1}{x^2}+\frac{1}{3}+\frac{x^2}{15}+\cdots+8(c_0+\eta)-8\left(\sum_{k}\frac{kq^{2k}}{1-q^{2k}}-\frac{(2x)^2}{2!}\sum_{k}\frac{k^3q^{2k}}{1-q^{2k}}+\cdots\right)$$
The $x^2$ coeffecient is
$$\frac{1-k^2+k^4}{15}\left(\frac{2K}{\pi}\right)^4=\frac{1}{15}+16\sum_{n=1}^{\infty}\frac{n^3 q^{2n}}{1-q^{2n}}$$
Or $$Q(q^2)=\left(\frac{2K}{\pi}\right)^4(1-k^2+k^4)$$
and the proposition is proved.
One thing to mention is that I did try to differentiate the $P$ function but had came to no avail
– Sep 28 '24 at 11:33