I just try to solve a problem, but I'm not sure it's right or not.
Here is the problem:
Suppose $f_n(x)=x^n\ln{x}$, $ n \in \mathbb{N}$.
Find $$ \lim_{n\to\infty} \frac{f_n^{(n)}(\frac{1}{n})}{n!} $$
My idea is by Leibniz product rule $$ \left[\left(\frac{1}{n}\right)^n\ln{\frac{1}{n}}\right]^{(n)}=\overset{n}{\underset{k=0}{\sum}}\binom{n}{k}\cdot k!\cdot n^{-2n-k} $$ Since n approaches to infinity, I check the n-th term, $n!\cdot n^{-n}$.
With the denominator, $$ \lim_{n\to \infty}n^{-n}= e^{\lim_{n\to \infty}(-n\ln{n})}=0$$
I appreciate your feedback.