Let $v$ and $w$ be elements of an inner product space. Prove that $||v + w||^2 = ||v||^2 + ||w||^2$ if and only if $v$, and $w$ are orthogonal.
I'll answer my own question below
Let $v$ and $w$ be elements of an inner product space. Prove that $||v + w||^2 = ||v||^2 + ||w||^2$ if and only if $v$, and $w$ are orthogonal.
I'll answer my own question below
Note: "i.p." is to mean inner-product, and have others have noted, I’m assuming we’re only dealing with $\mathbb{R}$: $$ \begin{aligned} ||v+w||^2 &= \langle v+w,v+w\rangle\\ &= \langle v,v\rangle +\langle v,w\rangle +\langle w,v\rangle +\langle w,w\rangle \\ &= \langle v,v\rangle +2\langle v,w\rangle+\langle w,w\rangle &&(\text{since } \langle v,w\rangle=\langle w,v\rangle \text{ when i.p. exists}) \end{aligned} $$
And
$$ ||v||^2+||w||^2=\langle v,v\rangle +\langle w,w\rangle $$
Now
$$ ||v + w||^2 = ||v||^2 + ||w||^2\\ \implies\langle v,v\rangle +\color{red}{2\langle v,w\rangle } +\langle w,w\rangle=\langle v,v\rangle +\langle w,w\rangle $$
This is only true iff $2\langle v,w \rangle=0\implies \langle v,w \rangle=0$ which is the definition of $2$ vectors being orthogonal.