In this question, it uses the property \begin{align*} \max_{x\neq 0}\frac{(A\sqrt{B}x,\sqrt{B}x)}{(\sqrt{B}x,\sqrt{B}x)}= \max_{x\neq 0}\frac{(Ax,x)}{(x,x)} \end{align*} where $A,\sqrt{B}$ are invertible symmetric matrices and $x\in \mathbb{R}^n$.
I am thinking about how one would prove this. I provide a proof below using contradiction but language seems cumbersome to me. I am wondering whether a more concise proof is possible.
Proof
Suppose not. Then either \begin{align*} \max_{x\neq 0}\frac{(A\sqrt{B}x,\sqrt{B}x)}{(\sqrt{B}x,\sqrt{B}x)}< \max_{x\neq 0}\frac{(Ax,x)}{(x,x)} \end{align*} or \begin{align*} \max_{x\neq 0}\frac{(A\sqrt{B}x,\sqrt{B}x)}{(\sqrt{B}x,\sqrt{B}x)}> \max_{x\neq 0}\frac{(Ax,x)}{(x,x)} \end{align*} Let's just consider the first case as the other case would be similar.
Let $x_0=\arg \max_{x\neq 0}\frac{(Ax,x)}{(x,x)}$ and $x_1=\arg \max_{x\neq 0}\frac{(A\sqrt{B}x,\sqrt{B}x)}{(\sqrt{B}x,\sqrt{B}x)}$. Then, \begin{align*} \frac{(A\sqrt{B}x_1,\sqrt{B}x_1)}{(\sqrt{B}x_1,\sqrt{B}x_1}< \frac{(A\sqrt{B}\sqrt{B}^{-1}x_0,\sqrt{B}\sqrt{B}^{-1}x_0)}{(\sqrt{B}\sqrt{B}^{-1}x_0,\sqrt{B}\sqrt{B}^{-1}x_0}=\frac{(Ax_0,x_0)}{(x_0,x_0)} \end{align*} This means $x_1\neq \arg \max_{x\neq 0}\frac{(A\sqrt{B}x,\sqrt{B}x)}{(\sqrt{B}x,\sqrt{B}x)}$ which gives us a contradiction.