0

Let $a=1,b=1.1,p=\frac{4c}{\left(a-b\right)}\sqrt{\frac{1-\ln2}{1+\ln2}},c=d$ then $\exists d \in(0,0.1)$ such that for $x>0$:

$$\frac{ax^{p}+b}{cx^{p}+d}-\frac{a+b}{c+d}+2\geq \left(1+x\right)^{x^{-\frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}}\tag{I}$$

Simply $d$ is choose as $f'''(1)=g'''(1)$ where :

$$\frac{ax^{p}+b}{cx^{p}+d}-\frac{a+b}{c+d}+2=f(x),g(x)=\left(1+x\right)^{x^{-\frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}}$$

For a motivation see this link Find the "best" $n$ such that $g(x)\leq 4$

I spend more than a day to find a proof of this fact .

Logarithmic derivative doesn't helps here and I have tried a lot of things including Padé approximation .

Question :

How to show it ?

Any clue is very very welcome .

Ps: I cannot find $d$ can someone can give the expected value in a comment thanks !

$$g'''(1)=a=\left(2\left(\frac{1}{2}+\frac{1}{2}\left(\sqrt{\frac{1-\ln2}{1+\ln2}}-1\right)\right)^{3}+6\left(\frac{1}{2}+\frac{1}{2}\left(\sqrt{\frac{1-\ln2}{1+\ln2}}-1\right)\right)\left(-\frac{1}{4}-\frac{\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}{2\ln2}-\frac{1}{2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)\left(-1-\frac{\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}{2\ln\left(2\right)}\right)\right)+2\left(\frac{1}{4}+\frac{3\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}{8\ln\left(2\right)}-\frac{3\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}{4\ln2}\cdot\left(-1-\frac{\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)}{2\ln2}\right)-\frac{1}{2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)\left(-2-\left(\frac{1-\sqrt{\frac{1-\ln2}{1+\ln2}}}{2\ln2}\right)\right)\cdot\left(-1-\left(\frac{1-\sqrt{\frac{1-\ln2}{1+\ln2}}}{2\ln2}\right)\right)\right)\right)$$

That's why I say it's a bit hard to show .

Barackouda
  • 3,879
  • @ClaudeLeibovici I really need your helps here to find $d$ and if you some ideas to share I will be thankful . – Barackouda Sep 18 '22 at 16:49
  • Just a very personal question : are you masochistic for asking yourself such questions and sadistic to ask for my help ? Back to serious : it is not clear to me; do you impose $a=1$, $b=1.1$ and $c=d$ ? – Claude Leibovici Sep 19 '22 at 06:26
  • @ClaudeLeibovici Yes I impose it . Off topic Ps : let $0<x<1$ then : $$\frac{\left(\frac{9}{10}x\ln\left(x\right)+\ln\left(1+\frac{x^{2}\left(x-1\right)^{2}}{8}\right)\right)}{\ln\left(27e\right)}\cdot\frac{x+1}{W\left(\frac{\left(x+1\right)\left(\frac{9}{10}x\ln\left(x\right)+\ln\left(1+\frac{x^{2}\left(x-1\right)^{2}}{8}\right)\right)}{\ln\left(27e\right)}\right)}\simeq x!$$ for one of your other question – Barackouda Sep 19 '22 at 10:27
  • I give up. Sorry for that ! Cheers & thanks for the gift (last approximation). – Claude Leibovici Sep 19 '22 at 11:01

0 Answers0