Problem: Let $0<n<1$ be a real number, then define for $x>0$ : $$f(x)=\left(1+x\right)^{\frac{1}{x^{n}}} \quad \text{ and }\quad g(x)=f(x)+f\!\left(\frac{1}{x}\right).$$ What is the minimum value of $n$ such that $g(x)\leq 4$?
This problem is a direct follow up of Prove that $(1+x)^\frac{1}{x}+(1+\frac{1}{x})^x \leq 4$.
On the link we can find some good ideas to show the case $n=1$. Some numerical routine show that the "best" value of $n$ is close to $n\simeq\sqrt{2}-1\simeq \frac{3}{5}\ln(2)$. How should we find $n$? Does it admit a closed form?
I totally forgot the second derivative. My apologies for this. Any help is greatly appreciated.
Some further investigation :
Using @Gary "best" constant $v=\frac{1}{2\ln2}\left(1-\sqrt{\frac{1-\ln2}{1+\ln2}}\right)$ we have using Lemma 7.1 in (1) for $1\leq x \leq 2$ : $$2^{x^{v}}\left((1-x^{v})^{2}+\frac{1+x^{-1}}{2}\cdot x^{v}\cdot(2-x^{v})-\frac{1+x^{-1}}{2}\cdot x^{v}\cdot(1-x^{v})\cdot\ln\frac{1+x^{-1}}{2}\right)\geq \left(1+x^{-1}\right)^{x^{v}}$$ I used $c=x^{v},a=\frac{1+x^{-1}}{2}$ in the Lemma.
Update:
Using WA and choosing the simplest function I got :
Let $1\leq x\leq 3$ then we have :
$$x^{a}+x^{b}+cx-c\geq \left(1+x\right)^{x^{-v}}$$
Where :
$$a=\frac{1}{2}\left(1-\sqrt{2-4\sqrt{\frac{1-\ln2}{1+\ln2}}}\right),c=-1+\sqrt{\frac{1-\ln2}{1+\ln2}}+\sqrt{\frac{1}{2}-\sqrt{\frac{1-\ln2}{1+\ln2}}},b=1/2$$
Ref (1): Cirtoaje, Vasile. "Proofs of three open inequalities with power-exponential functions.." The Journal of Nonlinear Sciences and its Applications 4.2 (2011): 130-137. http://eudml.org/doc/223938.