Let $a,b > 0 $ and $T > 0$ and $\alpha= 2$. then by combining my answer to this question with this result we noticed that the following identity below holds true.
\begin{eqnarray} &&rhs_{a,b}(T):=\\ &&\underline{\int\limits_0^a \frac{1}{\alpha} (a-s)^{\frac{1}{\alpha}} \Gamma[-\frac{1}{\alpha},(a-s) T^{-\alpha}] \sqrt{b} \frac{I_1(2 \sqrt{b s})}{\sqrt{s}} ds}+\\ &&\int\limits_0^b \frac{1}{\alpha} (b-s)^{-\frac{1}{\alpha}} \gamma[+\frac{1}{\alpha},(b-s) T^{\alpha}] \sqrt{a} \frac{I_1(2 \sqrt{a s})}{\sqrt{s}} ds + \\ &&-\underline{\underline{T I_0(2 \sqrt{a b})}} + \underline{\frac{1}{\alpha} a^{\frac{1}{\alpha}} \Gamma(-\frac{1}{\alpha},a T^{-\alpha})} + \frac{1}{\alpha} b^{-\frac{1}{\alpha}} \gamma(+\frac{1}{\alpha},b T^{\alpha}) = \\ &&\frac{\sqrt{\pi } e^{-2 \sqrt{a b}}}{2 \sqrt{b}}-\frac{\sqrt{\pi } \left(e^{-2 \sqrt{a b}} \text{erfc}\left(\sqrt{b} T-\frac{\sqrt{a}}{T}\right)+e^{2 \sqrt{a b}} \text{erfc}\left(\frac{\sqrt{a}}{T}+\sqrt{b} T\right)\right)}{4 \sqrt{b}}\tag{1} \end{eqnarray}
In[6892]:= {a, b, alpha, T} = RandomReal[{0, 5}, 4]; alpha = 2;
NIntegrate[
1/alpha (a - s)^(1/alpha) Gamma[-1/
alpha, (a - s) T^(-alpha)] (b BesselI[1, 2 Sqrt[b s]])/
Sqrt[b s], {s, 0, a}] +
NIntegrate[
1/alpha (b - s)^(-1/alpha) Gamma[1/alpha,
0, (b - s) T^(alpha)] (a BesselI[1, 2 Sqrt[a s]])/Sqrt[a s], {s,
0, b}] + -T BesselI[0, 2 Sqrt[b (a)]] +
1/alpha a^(1/alpha) Gamma[-1/alpha, a T^(-alpha)] +
1/alpha b^(-1/alpha) Gamma[1/alpha, 0, b T^(alpha)]
Sqrt[Pi]/(2 Sqrt[b]) Exp[-2 Sqrt[a b]] -
Sqrt[Pi]/(4 Sqrt[b]) (Exp[2 Sqrt[a b]] Erfc[
Sqrt[b] T + Sqrt[a] 1/T] +
Exp[-2 Sqrt[a b]] Erfc[Sqrt[b] T - Sqrt[a] 1/T])
Out[6893]= 1.29874
Out[6894]= 1.29874
My question is twofold. Firstly how would one go about proving $(1)$ in a different way, i.e. without using the approach in the links above. secondly, how does the right hand side look like when $\alpha \neq 2$?
Update:
Note that when $T \rightarrow \infty$ then the identity holds true as I am showing below.
\begin{eqnarray} \lim\limits_{T \rightarrow \infty} rhs_{a,b}(T) &=& \frac{\pi b^{-1/\alpha } \csc \left(\frac{\pi }{\alpha }\right) \left(\, _0\tilde{F}_1\left(;\frac{\alpha -1}{\alpha };a b\right)-a^{\frac{1}{\alpha }} b^{\frac{1}{\alpha }} \, _0\tilde{F}_1\left(;1+\frac{1}{\alpha };a b\right)\right)}{\alpha } \\ &=&\frac{\pi \left(\frac{\cosh \left(2 \sqrt{a} \sqrt{b}\right)}{\sqrt{\pi }}-\frac{\sinh \left(2 \sqrt{a} \sqrt{b}\right)}{\sqrt{\pi }}\right)}{2 \sqrt{b}} \\ &=& \frac{\sqrt{\pi } e^{-2 \sqrt{a b}}}{2 \sqrt{b}} \end{eqnarray}
Here the first step follows from the Update in my answer to this question.
Update 1:
Let us take the limit of $ b \rightarrow 0 $ from both sides. Then in the right hand side the two integrals vanish and out of the three terms in the bottom line the first and the third go into $-T$ and $+T$ respectively and we have: We have:
\begin{eqnarray} \lim\limits_{b\rightarrow 0} rhs_{a,b}(T) &=& \underline{\frac{1}{\alpha} a^{\frac{1}{\alpha}} \Gamma(-\frac{1}{\alpha},a T^{-\alpha})} \\ &=&T e^{-\frac{a}{T^2}}-\sqrt{\pi } \sqrt{a} \text{erfc}\left(\frac{\sqrt{a}}{T}\right) \\ &=&\lim\limits_{b\rightarrow 0} lhs_{a,b}(T) \end{eqnarray}
Likewise, let us take the limit of $a \rightarrow 0$. Then, again, the two integrals on the right hand side vanish and out of the the three terms in the bottom line the first two cancel each other and we have:
\begin{eqnarray} \lim\limits_{a\rightarrow 0} rhs_{a,b}(T) &=& \frac{1}{\alpha} b^{-\frac{1}{\alpha}} \gamma(+\frac{1}{\alpha},b T^{\alpha}) \\ &=& \frac{\sqrt{\pi }-\sqrt{\pi } \text{erfc}\left(\sqrt{b} T\right)}{2 \sqrt{b}} \\ &=&\lim\limits_{a\rightarrow 0} lhs_{a,b}(T) \end{eqnarray}
Update 2:
Define ${\hat rhs}_{a,m}(T)$ and ${\hat lhs}_{a,m}(T)$ as the coefficient of the right and the left hand sides at $b^m$. Then we have:
\begin{eqnarray} &&{\hat rhs}_{a,m}(T) := \\ &&\frac{1}{m!}\sum\limits_{m_1=0}^m \left(\frac{(-1)^{m_1} a^{m-m_1} T^{\alpha m_1+1}}{\left(m-m_1\right)! \left(\alpha m_1+1\right) } \right)+\frac{\frac{\frac{1}{\alpha }! (m-1)! \Gamma \left(-\frac{1}{\alpha }\right) a^{\frac{1}{\alpha }+m}}{\alpha \left(\frac{1}{\alpha }+m\right)!}+\frac{T a^m \, _2F_2\left(1,-\frac{1}{\alpha };1-\frac{1}{\alpha },m+1;-a T^{-\alpha }\right)}{m}}{(m-1)! m!}-\frac{T a^m}{(m!)^2} \\ &&= \frac{1}{\alpha m!} \exp\left( -\frac{a}{T^\alpha} \right) \sum\limits_{j=0}^m \frac{a^{m-j} (-1)^j T^{\alpha j+1} }{(\frac{1}{\alpha} +m)_{(m-j+1)}} - \frac{1}{\alpha m!} \frac{a^{m + \frac{1}{\alpha}}}{(\frac{1}{\alpha})^{(m+1)}} \cdot \Gamma\left[1- \frac{1}{\alpha}, \frac{a}{T^\alpha} \right] \tag{1a} \\ &&=\frac{(-1)^m a^{\frac{1}{\alpha }+m} \Gamma \left(-\frac{\alpha m+1}{\alpha },a T^{-\alpha }\right)}{\alpha m!} % &&{\hat lhs}_{a,m}(T) := \\ &&\frac{1}{2} \sqrt{\pi } \left( \right. \\ && \left. % -\frac{2 e^{-\frac{a}{T^2}} }{\sqrt{\pi }} \sum\limits_{n_1=1}^{m} \sum\limits_{m_2=0}^{\left\lfloor \frac{1}{2} \left(2 n_1-1\right)\right\rfloor } \left( \frac{(-1)^{m_2} 2^{2 m-2 m_2-1} a^{m-m_2} T^{2 m_2+1}}{n_1 m_2! \left(2 m-2 n_1+1\right)! \left(-2 m_2+2 n_1-1\right)!} \right)+ \right. \\ && \left. % \frac{2 e^{-\frac{a}{T^2}} }{\sqrt{\pi }} \sum\limits_{n_1=0}^m \sum\limits_{m_2=0}^{\left\lfloor n_1\right\rfloor} \left( \frac{(-1)^{m_2} 2^{2 \left(m-m_2\right)} a^{m-m_2} T^{2 m_2+1}}{\left(2 n_1+1\right) m_2! \left(2 \left(m-n_1\right)\right)! \left(2 n_1-2 m_2\right)!} \right)+ % \right. \\ && \left.\frac{2^{2 m+1} a^{\frac{1}{2} (2 m+1)} \left(\text{erf}\left(\frac{\sqrt{a}}{T}\right)-1\right)}{(2 m+1)!} \right. \\ && \left. % \right) \tag{1b} \end{eqnarray}
where $m=1,2,3,\cdots$.
By using the Mathematica code snippet below we have checked that those coefficients match up to $m=4$. Here we go:
a =.; b =.; alpha =.; T =.; M = 4;
rhs := Integrate[
1/alpha (a - s)^(1/alpha) Gamma[-1/
alpha, (a - s) T^(-alpha)] (b BesselI[1, 2 Sqrt[b s]])/
Sqrt[b s], {s, 0, a}] +
Integrate[
1/alpha (b - s)^(-1/alpha) Gamma[1/alpha,
0, (b - s) T^(alpha)] (a BesselI[1, 2 Sqrt[a s]])/Sqrt[a s], {s,
0, b}] + -T BesselI[0, 2 Sqrt[b (a)]] +
1/alpha a^(1/alpha) Gamma[-1/alpha, a T^(-alpha)] +
1/alpha b^(-1/alpha) Gamma[1/alpha, 0, b T^(alpha)]
lhs := Sqrt[Pi]/(2 Sqrt[b]) Exp[-2 Sqrt[a b]] -
Sqrt[Pi]/(4 Sqrt[b]) (Exp[2 Sqrt[a b]] Erfc[
Sqrt[b] T + Sqrt[a] 1/T] +
Exp[-2 Sqrt[a b]] Erfc[Sqrt[b] T - Sqrt[a] 1/T])
(Coefficients of both sides at b^m for m=1,2,3...)
lhs10 = Drop[
Simplify[
CoefficientList[
Normal[Series[lhs, {b, 0, M},
Assumptions :> b > 0 && a > 0 && T > 0]], b],
Assumptions -> a > 0 && T > 0], 1];
lhs1 =
Table[
Sqrt[Pi]/2 (
(-1 + Erf[Sqrt[a]/T]) (2 Sqrt[a])^(2 m + 1)/(2 m + 1)! +
E^(-a/T^2)
2/Sqrt[Pi] Sum[((-1)^m2 2^(2 (m - m2)) a^(m - m2) T^(
1 + 2 m2))/
m2! (Sum[
1/((1 + 2 n1) (2 (m - n1))! (-2 m2 + 2 n1)!), {n1, m2,
m}] + Sum[-1/(
2 n1 (1 + 2 m - 2 n1)! (-1 - 2 m2 + 2 n1)!), {n1, m2 + 1,
m}]), {m2, 0, m}]
)
, {m, 1, M}];
a =.; alpha =.; T =.;
rhs1 = Table[
1/m! 1/alpha Gamma[-1/
alpha] a^(1/alpha + m) (1/alpha)! 1/(1/alpha + m)! + (
a^m T HypergeometricPFQ[{1, -(1/alpha)}, {1 - 1/alpha,
1 + m}, -a T^-alpha])/(m! m!) +
1/m! Sum[(-1)^
m1 T^(m1 alpha + 1)/(m1 alpha + 1) a^(m - m1)/(m - m1)! , {m1,
0, m}] + (-T) a^m/(m! m!)
, {m, 1, M}];
rhs1a = Table[
1/(alpha m!)
Exp[-a/T^alpha] Sum[(a^(m - j) (-1)^j T^(alpha j + 1))/
Pochhammer[1/alpha + m - (m - j + 1) + 1, m - j + 1], {j, 0,
m}] + 1/( alpha m!) a^(m + 1/alpha)/
Pochhammer[1/alpha,
m + 1] (-Gamma[(-1 + alpha)/alpha, a T^(-alpha)])
, {m, 1, M}];
(lhs1 - lhs10) // FullSimplify
(lhs1 - (rhs1 /. alpha :> 2)) // FullSimplify
FullSimplify[(rhs1 - rhs1a)] // PowerExpand
