1

Let ${\bar x} > 0 $, $\sigma >0$, $\mu \in {\mathbb R}$, $T > 0 $ and $\alpha \in {\mathbb R}$. Let $\phi(x) := \exp(-x^2/2)/\sqrt{2\pi} $ be a probability density of a standard normal variable. Then consider the following integral:

\begin{equation} F_{\mu\,\sigma}[{\bar x},T]:= \int\limits_T^\infty \frac{1}{\xi^\alpha} \cdot \phi\left(\frac{{\bar x} - \mu \xi}{\sigma \sqrt{\xi}}\right) d\xi \end{equation}

This integral appears in the context of either the first hitting time of a barrier by a Brownian motion or of the law of the supremum of the Brownian motion (see Theorem 46.4 page 348 in

Sato, Ken-Iti, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics. 68. Cambridge: Cambridge University Press. xii, 486 p. (1999). ZBL0973.60001.).

We have calculated this integral for $\alpha = 3/2 + m$ where $ m\in {\mathbb Z}$. The result reads:

\begin{eqnarray} \left. F_{\mu\,\sigma}[{\bar x},T]:= \frac{e^{\frac{\mu {\bar x}}{\sigma^2}}}{\sqrt{2}} (-1)^m \frac{d^{|m|}}{d \theta^{|m|}} \right\{ \begin{array}{lll} % \left. \frac{e^{-2 \sqrt{\theta b}}}{\sqrt{\theta}} - \frac{1}{2 \sqrt{\theta}} \left( e^{+2\sqrt{\theta b}} erfc[\frac{\sqrt{\theta}}{\sqrt{T}} + \sqrt{b T}] + e^{-2\sqrt{\theta b}} erfc[\frac{\sqrt{\theta}}{\sqrt{T}} - \sqrt{b T}] \right) \right|_{\theta = a} & \mbox{if $m \ge 0 $} \\ % \left. \frac{e^{-2 \sqrt{a \theta}}}{\sqrt{a}} - \frac{1}{2 \sqrt{a}} \left( e^{+2\sqrt{a \theta}} erfc[\frac{\sqrt{a}}{\sqrt{T}} + \sqrt{\theta T}] + e^{-2\sqrt{a \theta}} erfc[\frac{\sqrt{a}}{\sqrt{T}} - \sqrt{\theta T}] \right) \right|_{\theta=b}& \mbox{if $m <0 $} \end{array} \end{eqnarray} where $(a,b) = ({\bar x}^2/(2 \sigma^2),\mu^2/(2 \sigma^2)) $.

The derivation is not complicated. It basically boils down to using this result and then differentiating with respect to parameters of the integrand to induce an arbitrary power function in that integrand. Below is a verification of that result in Mathematica:

In[7307]:= phi[x_] := Exp[-x^2/2]/Sqrt[2 Pi];

sig = RandomReal[{1, 2}]; {mu} = RandomReal[{-2, 2}, 1]; {T, x} = RandomReal[{1, 3}, 2]; m = RandomInteger[{0, 10}]; xi =.; NIntegrate[ 1/xi^((3 + 2 m)/2) phi[(x - mu xi)/(sig Sqrt[xi])], {xi, T, Infinity}] Exp[(mu x)/sig^2]/Sqrt[2 Pi] NIntegrate[ 1/xi^((3 + 2 m)/2) Exp[-(x^2/(2 sig^2 xi)) - (mu^2 xi)/( 2 sig^2)], {xi, T, Infinity}] {a, b} = {x^2/(2 sig^2), (mu^2) /(2 sig^2)}; Exp[(mu x)/sig^2]/Sqrt[2 Pi] (2) NIntegrate[ xi^(2 m) Exp[-a xi^2 - b/xi^2], {xi, 0, 1/Sqrt[T]}] th =.; Exp[(mu x)/sig^2]/ Sqrt[2] (D[ 1/Sqrt[th] Exp[-2 Sqrt[th b]] - 1/(2 Sqrt[ th]) (Exp[2 Sqrt[th b]] Erfc[Sqrt[th]/Sqrt[T] + Sqrt[b T]] + Exp[-2 Sqrt[ th b]] Erfc[Sqrt[th]/Sqrt[T] - Sqrt[b T]]), {th, m}] /. th :> a) (-1)^m

m = -m; NIntegrate[ 1/xi^((3 + 2 m)/2) phi[(x - mu xi)/(sig Sqrt[xi])], {xi, T, Infinity}] Exp[(mu x)/sig^2]/ Sqrt[2] (D[ 1/Sqrt[a] Exp[-2 Sqrt[a th]] - 1/(2 Sqrt[ a]) (Exp[2 Sqrt[a th]] Erfc[Sqrt[a]/Sqrt[T] + Sqrt[th T]] + Exp[-2 Sqrt[ a th]] Erfc[ Sqrt[a]/Sqrt[T] - Sqrt[th T]]), {th, -m}] /. th :> b) (-1)^m

Out[7313]= 0.000155233

Out[7314]= 0.000155233

Out[7316]= 0.000155233

Out[7318]= 0.000155233

Out[7320]= 70253.1

Out[7321]= 70253.1

My question would be twofold, firstly how does the result look like when the parameter $\alpha$ is arbitrary? The second question would be more generic. Note that the function $\phi()$ is nothing else but the probability density of a Brownian motion at time one, i.e. $\phi(x) := \phi_{B_1}(x) $. Would it be possible to derive the result if we were to replace the Brownian motion by some other Levy process, for example a Levy stable process or a jump diffusion ?

Przemo
  • 11,971
  • 1
  • 25
  • 56

1 Answers1

1

This is a partial answer to the first question. Take $\alpha > 1$ and $a,b \ge 0$. Then the following identities hold true:

\begin{eqnarray} &&I^{(\alpha)}_{a,b}(T):= \int\limits_0^T e^{- \frac{a}{\xi^\alpha} - b \xi^\alpha } d\xi = \tag{1} \\ &&e^{-\sqrt{4 a b}} \frac{\sqrt{2\pi}}{\alpha}\int\limits_0^{T^\alpha} u^{-1+\frac{1}{\alpha}} \cdot \phi(\frac{\sqrt{2 a} - \sqrt{2 b} u}{\sqrt{u}}) du = \tag{2} \\ &&\underline{\int\limits_0^a \frac{1}{\alpha} (a-s)^{\frac{1}{\alpha}} \Gamma[-\frac{1}{\alpha},(a-s) T^{-\alpha}] \sqrt{b} \frac{I_1(2 \sqrt{b s})}{\sqrt{s}} ds}+\\ &&\int\limits_0^b \frac{1}{\alpha} (b-s)^{-\frac{1}{\alpha}} \gamma[+\frac{1}{\alpha},(b-s) T^{\alpha}] \sqrt{a} \frac{I_1(2 \sqrt{a s})}{\sqrt{s}} ds + \\ &&-\underline{\underline{T I_0(2 \sqrt{a b})}} + \underline{\frac{1}{\alpha} a^{\frac{1}{\alpha}} \Gamma(-\frac{1}{\alpha},a T^{-\alpha})} + \frac{1}{\alpha} b^{-\frac{1}{\alpha}} \gamma(+\frac{1}{\alpha},b T^{\alpha}) \tag{3} \end{eqnarray}

In $(2)$ we substituted for $u=\xi^\alpha$. In $(3)$ we did the following. We differentiated the original quantity with respect to parameters and established that $d^2/(da db) I^{(\alpha)}_{a,b}(T) = I^{(\alpha)}_{a,b}(T) $ subject to $I^{(\alpha)}_{0,b} = 1/\alpha b^{-1/\alpha} \gamma(1/\alpha, b T^\alpha) $ and $I^{(\alpha)}_{a,0} = 1/\alpha a^{+1/\alpha} \Gamma(-1/\alpha, a T^{-\alpha}) $. Then we used this result which we integrated by parts once.

In[2575]:= {a, b, alpha, T} = RandomReal[{2, 5}, 4]; z =.;
NIntegrate[Exp[-a/xi^alpha - b xi^alpha], {xi, 0, T}]
Exp[-Sqrt[4 a b]] Sqrt[2 Pi]/alpha NIntegrate[
  phi[(Sqrt[2 a] - Sqrt[2 b] u)/Sqrt[u]] u^(-1 + 1/alpha), {u, 0, 
   T^(alpha)}]
ff[a_] := (-alpha E^(-a T^-alpha) T + 
  a^(1/alpha) Gamma[-(1/alpha), a T^-alpha])/(
 a alpha^2);(*D[1/alpha a^(1/alpha) Gamma[-1/alpha,a T^(-alpha)],a]*)

gg[b_] := ( alpha E^(-b T^alpha) T - b^(-1/alpha) Gamma[1/alpha, 0, b T^alpha])/( alpha^2 b); (D[1/alpha b^(-1/alpha) Gamma[1/alpha,0,b T^(alpha)],b]) NIntegrate[ (ff[s]) BesselI[0, 2 Sqrt[b (a - s)]], {s, 0, a}] + NIntegrate[ (gg[s]) BesselI[0, 2 Sqrt[a (b - s)]], {s, 0, b}] + T BesselI[0, 2 Sqrt[b (a)]]

NIntegrate[ 1/alpha (a - s)^(1/alpha) Gamma[-1/alpha, (a - s) T^(-alpha)] ( b BesselI[1, 2 Sqrt[b s]])/Sqrt[b s], {s, 0, a}] + NIntegrate[ 1/alpha (b - s)^(-1/alpha) Gamma[1/alpha, 0, (b - s) T^(alpha)] ( a BesselI[1, 2 Sqrt[a s]])/Sqrt[a s], {s, 0, b}] + -T BesselI[0, 2 Sqrt[b (a)]] + 1/alpha a^(1/alpha) Gamma[-1/alpha, a T^(-alpha)] + 1/alpha b^(-1/alpha) Gamma[1/alpha, 0, b T^(alpha)]

Out[2576]= 0.00025449

Out[2577]= 0.00025449

Out[2579]= 0.000254489 + 1.0681*10^-11 I

Out[2580]= 0.00025449 + 3.83412*10^-16 I

Unfortunately my present knowledge about Bessel functions is insufficient to be able to complete this calculation.

Update:

By taking the limit of $T \rightarrow \infty $ in the above we get two interesting identities:

\begin{eqnarray} &&I^{(\alpha)}_{a,b}(\infty) = \\ && \frac{\Gamma(-\frac{1}{\alpha})}{\alpha} \int\limits_0^a (a-s)^{\frac{1}{\alpha}} \sqrt{b} \frac{I_1(2 \sqrt{b s})}{\sqrt{s}} ds+\\ && \frac{\Gamma(+\frac{1}{\alpha})}{\alpha} \int\limits_0^b (b-s)^{-\frac{1}{\alpha}} \sqrt{a} \frac{I_1(2 \sqrt{a s})}{\sqrt{s}} ds+\\ &&\frac{\Gamma(-\frac{1}{\alpha})}{\alpha} a^{\frac{1}{\alpha}} + \frac{\Gamma(+\frac{1}{\alpha})}{\alpha} b^{-\frac{1}{\alpha}} = \\ && \frac{\pi b^{-1/\alpha } \csc \left(\frac{\pi }{\alpha }\right) \left(\, _0\tilde{F}_1\left(;\frac{\alpha -1}{\alpha };a b\right)-a^{\frac{1}{\alpha }} b^{\frac{1}{\alpha }} \, _0\tilde{F}_1\left(;1+\frac{1}{\alpha };a b\right)\right)}{\alpha } \tag{4} \end{eqnarray}

and

\begin{equation} \sqrt{b} \int\limits_0^a \frac{I_1(2 \sqrt{b s})}{\sqrt{s}} ds - I_0(2 \sqrt{ a b}) + 1 \equiv 0 \end{equation}

In[2768]:= {a, b} = RandomReal[{1, 2}, 2, WorkingPrecision -> 50];
NIntegrate[Sqrt[b] BesselI[1, 2 Sqrt[b s]]/Sqrt[s], {s, 0, a}, 
  WorkingPrecision -> 15] - BesselI[0, 2 Sqrt[a b]] + 1
 (-1 + Hypergeometric0F1Regularized[1, a b]) - 
 BesselI[0, 2 Sqrt[a b]] + 1

{a, b, alpha} = RandomReal[{2, 5}, 3]; z =.; NIntegrate[Exp[-a/xi^alpha - b xi^alpha], {xi, 0, Infinity}]

Gamma[-1/alpha]/ alpha NIntegrate[ (a - s)^(1/alpha) (b BesselI[1, 2 Sqrt[b s]])/ Sqrt[b s], {s, 0, a}] + Gamma[+1/alpha]/ alpha NIntegrate[ (b - s)^(-1/alpha) (a BesselI[1, 2 Sqrt[a s]])/ Sqrt[a s], {s, 0, b}] + Gamma[-1/alpha]/alpha a^(1/alpha) + Gamma[+1/alpha]/alpha b^(-1/alpha)

Gamma[-1/alpha]/ alpha ((1/alpha)! b a^(1 + 1/alpha) ((a b)^(-1 - 1/(2 alpha)) BesselI[1/alpha, 2 Sqrt[a b]] - 1/( a b Gamma[(1 + 2 alpha)/alpha]) - 1/( a b alpha Gamma[(1 + 2 alpha)/alpha]))) + Gamma[+1/alpha]/ alpha ((-1/alpha)! a b^(1 - 1/alpha) ((a b)^(-1 + 1/(2 alpha)) BesselI[-1/alpha, 2 Sqrt[a b]] - 1/( a b Gamma[(1 - 2 alpha)/-alpha]) + 1/( a b alpha Gamma[(1 - 2 alpha)/-alpha]))) + Gamma[-1/alpha]/alpha a^(1/alpha) + Gamma[+1/alpha]/alpha b^(-1/alpha)

(b^(-1/alpha) [Pi] Csc[[Pi]/ alpha] (-a^((1/alpha)) b^(1/alpha) Hypergeometric0F1Regularized[1 + 1/alpha, a b] + Hypergeometric0F1Regularized[(-1 + alpha)/alpha, a b]))/alpha

Out[2769]= 0.*10^-15

Out[2770]= 0.*10^-49

Out[2772]= 0.0000946722

Out[2773]= 0.0000946621

Out[2774]= 0.0000946722

Out[2775]= 0.0000946722

Przemo
  • 11,971
  • 1
  • 25
  • 56