Let $E \subseteq \mathbb{R}^n$ be an open subset. $f:E \to \mathbb{R}$ be differentiable, and suppose that $\nabla f$ is uniformly continuous.
Is it true that $f$ is "uniformly differentiable"? i.e. does there exist, for any $\epsilon >0$, a $\delta > 0$ such that for all $a,x \in \mathbb{R}^n$, $$\frac{|f(x) - f(a) - \nabla f (a)\cdot (x-a)|}{|x-a|} <\epsilon$$ whenever $|x-a|<\delta$.
I can prove this for any convex $E$. (see below). Is it true for non-convex domains as well?
My proof:
$\nabla f$ uniformly continuous implies that for any $\epsilon >0$, there is a $\delta>0$ such that for all $x,y \in \mathbb{R}^n$, $$|x-y|<\delta \Rightarrow |\nabla f(x) - \nabla f(y)|<\epsilon.$$
Let $\epsilon > 0 $ be fixed. Choose $x,a \in \mathbb{R}^n$ such that $|x-a| < \delta$. By the mean value theorem (for convex domains), there is a $z$ on the line segment connecting $a$ and $x$ such that
$$f(x) - f(a) = \nabla f (z) \cdot (x-a).$$
Then
$$\begin{align} \frac{|f(x) - f(a) - \nabla f (a)\cdot (x-a)|}{|x-a|} &= \frac{|(\nabla f(z) - \nabla f(a)) \cdot (x-a)|}{|x-a|} \\ & \leq \frac{|\nabla f(z) - \nabla f(a)| |x-a|}{|x-a|} \\ & < \epsilon \end{align},$$
since $|z-a| < |x-a| < \delta$.