Let $\Omega = \mathbb{N}_0^2, \mathcal{A}=Pot(\Omega)$ and $\mathbb{P}$ the product of two poisson distributions with paremeter $\lambda_1,\lambda_>0$, i.e $$ \mathbb{P}(\{(n_1,n_2)\})=\frac{\lambda_1^{n_1} \lambda_2^{n_2}}{n_1!n_2!} e^{-\lambda_1-\lambda_2}$$ Define then $X:\Omega\rightarrow \mathbb{N}_0,\ (n_1,n_2)\mapsto n_1+n_2$. Prove that X is poisson distributed with parameter $\lambda_1+\lambda_2$
I've seen various proofs that similar to this one, Poisson Distribution of sum of two random independent variables $X$, $Y$ , but they are basically between independent variables. In this job it's about one single random variable. So what to prove is that
$X$~$\mathcal{P}(\lambda_1+\lambda_2)$
My attempt
\begin{align}\mathbb{P}(X=n)
&=\mathbb{P}(n_1+n_2=n)\\&=\sum_{k=0}^n\mathbb{P}(n_1=k,n_2=n-k)\\&=
\sum_{k=0}^n\mathbb{P}(n_1=k)\mathbb{P}(n_2=n-k)
\\&=\sum^n_{k=0}\frac{\lambda_1^k\lambda^{n-k}}{k!(n-1)!}e^{-(\lambda_1+\lambda_2)}
\\&=\frac{(\lambda_1+\lambda_2)^n}{n_!}e^{-(\lambda_1+\lambda_2)}
\end{align}
This is obviously enough for $X$~$\mathcal{P}(\lambda_1+\lambda_2)$
But my worries is that, in the brackets of $\mathbb{P}$ am I allowed to use this kind of notation $n_1=k, n_2=n-k$, because from what I've learnd, in the brackts it should be a random variable equals to some real number, like $\mathbb{P}_X(\{t\})=\mathbb{P}(X=t)$, but in the proof it is a real number equals to some real number, I don't know it's correct