I'm trying to expand the function in a Laurent series
$$f(z) = \cot z$$
around the singularity $$z_{0} = n\pi$$ Initially I tried expanding $\tan z$ with a Taylor expansion:
$$\tan(z) = \tan(n\pi) + \tan'(n\pi) (z - n\pi) + \dfrac{tg''(n\pi)}{2}(z - n\pi)^{2} + \dfrac{tg'''(n\pi)}{6}(z - n\pi)^{3} + ...$$
$$\tan(z) = \dfrac{(z - n\pi)}{\cos(n\pi)} + \dfrac{1}{3}\dfrac{(z - n\pi)^{3}}{\cos^{4}(n\pi)} + ...$$
To obtain the inverse:
$$\cot z = \dfrac{1}{\tan z} = \left[\dfrac{(z - n\pi)}{\cos(n\pi)}\left(1 + \dfrac{1}{3}\dfrac{(z - n\pi)}{\cos^{3}(n\pi)}\right)\right]^{-1}$$
But I can't work from here