Let $A=\begin{pmatrix} a_{1} & a_{2} \\ a_{3} & -a_{1}\end{pmatrix}\in\mathfrak{sl}_{2}(\mathbb{C})$. Let $f_{A}:\mathfrak{sl}_{2}(\mathbb{C})\rightarrow\mathfrak{sl}_{2}(\mathbb{C})$ by $f_{A}(X)=AX-XA$.
Let $\mathcal{B}=\left\{\begin{pmatrix} 1 & 0 \\ 0 & -1\end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0\end{pmatrix}\right\}$.
Show that if $f_{A}$ is diagonalizable, then $A$ is diagonalizable.
My attempt:
Let $\mathcal{B}_{0}=\{B_{1},B_{2},B_{3}\}$ be a basis of $\mathfrak{sl}_{2}(\mathbb{C})$ be such that $[f_{A}]_{\mathcal{B}_0}$ is a diagonal matrix. This means that $f_{A}(B_{i})=\lambda_{i}B_{i}$ for $i=1,2,3$.
I am unable to find an approach that would get me to a direction where I can express $P^{-1}AP=D$ where $D$ is a diagonal matrix. Any hints or answers would be greatly appreciated.