I am reading "Tensor Algebra" by Takeo Yokonuma (in Japanese).
Problem 2 (on p. 329)
Let $V,W$ and $U$ be vector spaces over $k$, where $k$ is a field.
Let $\mathcal{L}(V,W;U)$ be the set of all bilinear mappings from $V\times W$ to $U$.
Let $\Phi\in\mathcal{L}(V,W;U)$.
Let $S:=\{\Phi(v,w)\mid v\in V, w\in W\}$.
Prove that there exist $V,W,U$ and $\Phi$ such that $S$ is not a subspace of $U$.
My attempt is here:
Let $M(m,n;k)$ be the set of all $m\times n$ matrices whose elements are elements of $k$.
Let $V:=M(m,l;k),W:=M(l,n;k)$ and $U:=M(m,n;k)$.
Then, $\Phi:V\times W\ni(A,B)\mapsto AB\in U$ is a bilinear mapping.
I want to find $m,l,n$ and $k$ and $(A_1,B_1),(A_2,B_2)\in V\times W$ such that $A_1B_1+A_2B_2\neq A_3B_3$ for any $(A_3,B_3)\in V\times W$.
I know the following propositions. (I don't know that the following propositions help me or not.)
Let $A,B\in M(m,n;k)$.
Then, $\operatorname{rank}(A+B)\leq\operatorname{rank}A+\operatorname{rank}B$.
Let $A\in M(m,l;k), B\in M(l,n;k)$.
Then, $\operatorname{rank}A+\operatorname{rank}B-l\leq\operatorname{rank}(AB)\leq\min\{\operatorname{rank}A,\operatorname{rank}B\}.$
