In the paper [1] below, the following series expansions were established.
When $r\ge0$, the series expansions
\begin{equation}\label{recip-sin-ser-closed-eq}
\biggl(\frac{\sin z}z\biggr)^r=1+\sum_{q=1}^{\infty}(-1)^q\Biggl[\sum_{k=1}^{2q}\frac{(-r)_k}{k!} \sum_{j=1}^k(-1)^j\binom{k}{j} \frac{T(2q+j,j)}{\binom{2q+j}{j}}\Biggr]\frac{(2z)^{2q}}{(2q)!}
\end{equation}
and
\begin{equation}\label{recip-sin-stirl-closed-eq}
\biggl(\frac{\sin z}z\biggr)^r=1+\sum_{q=1}^{\infty}(-1)^q\Biggl[\sum_{k=1}^{2q}\frac{(-r)_k}{k!} \sum_{j=1}^k(-1)^j\binom{k}{j} \sum_{m=0}^{2q}(-1)^{m}\binom{2q}{m} \biggl(\frac{j}{2}\biggr)^{m} \frac{S(2q+j-m,j)} {\binom{2q+j-m}{j}}\Biggr]\frac{(2z)^{2q}}{(2q)!}
\end{equation}
are convergent in $z\in\mathbb{C}$, where $T(n,k)$ and $S(n,k)$ denote the central factorial numbers and the Stirling numbers of the second kinds, and the rising factorial $(r)_k$ is defined by
\begin{equation*}%\label{rising-Factorial}
(r)_k=\prod_{\ell=0}^{k-1}(r+\ell)
= \begin{cases} r(r+1)\dotsm(r+k-1), & k\ge1;\\ 1, & k=0. \end{cases} \end{equation*}
When $r<0$, the above two series expansions are convergent in $|z|<\pi$.
However, by virtue of these two series expansions applied to $r=\frac25$, it is very difficult to verify that the function $1-\bigl(\frac{\sin z}z\bigr)^{2/5}$ has a Maclaurin expansion with all coefficients positive.
Reference
- Feng Qi and Peter Taylor, Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials, Applicable Analysis and Discrete Mathematics 18 (2024), no. 1, 92–115; available online at https://doi.org/10.2298/AADM230902020Q.
$$ and $\Gamma(-a)$ is negative if $0<a<1$.
– Gary May 08 '22 at 12:30