Consider the system of equations \begin{align} &f(x,y)=x+\frac{y^4}{2}+\frac{x^{32}}{4}+\frac{y^{128}}{8}=0 \\ &g(x,y)=y+\frac{x^8}{2}+\frac{y^{32}}{4}+\frac{x^{256}}{8}=0. \end{align}
I want to solve it using Newton-Raphson process or any other methods
Consider the initial guess $(x_0,y_0)=((-2)^{5/31},(-2)^{9/31})$, which is either $( 1.118,-1.223 )$ or $(x_0,y_0)=(-1.118,1.223)$.
I want to see whether the Newton-Raphson method converges with this initial guess.
Note that the initial guess $(x_0,y_0)$ is a simultaneous zero of the following truncated system obtained from the original system \begin{align} &x+\frac{y^4}{2}=0\\ &y+\frac{x^8}{2}=0. \end{align}
By hand calculation, it is laborious. For the jacobian is $$J =\begin{pmatrix} 1+8x^{31} & 2y^3+16y^{127} \\ 2x^3+32x^{255} & 1+8y^{31} \end{pmatrix} \Rightarrow J((x_0,y_0)) \approx \begin{pmatrix} 255 & -2.03 \times 10^{12} \\ 7.21 \times 10^{13} & -4104\end{pmatrix}$$ So the 2nd iteration is given by \begin{align} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}&=\begin{pmatrix}1.118 \\ 1.223 \end{pmatrix} -J((x_0,y_0))^{-1} \begin{pmatrix}f((x_0,y_0)) \\ g((x_0,y_0)) \end{pmatrix} \end{align} which seems difficult to calculate because I can not invert the huge matrix.
The zeros of the truncated system should converge to the solutions of the original system.
Can you please help me whether N-R method or any other numerical methods converges ?
More, specifically, how to show the simultaneous zeroes of the truncated system $ x+\frac{y^4}{2}=0=y+\frac{x^8}{2}$ converges to the simultaneous zeroes of the original system $f(x,y)=0=g(x,y)$ ?
Thanks


