This is a problem (#39 or #40 depending on the edition) at the end of Chapter 1 in Krantz's book Function Theory of Several Complex Variables.
Let $\Omega\subset\mathbb{C}^n$ be a smooth and bounded domain. Let $z_0\in\Omega$.
Goal: To construct an orthonormal basis of the Bergman Space $A^2(\Omega)$.
Step 1: Start the construction by choosing the unique function $\phi_0\in A^2(\Omega)$ with $\phi_0(z_0)$ real, $\|\phi_0\|=1$ and $\phi_0(z_0)$ maximal. We have an explicit description of $\phi_0$. Let $K$ be the Bergman kernel for $\Omega$. Then
$$ \phi_0(z) = \dfrac{K(z,z_0)}{\sqrt{K(z_0,z_0)}}.$$
This is because we have
$$ K(z_0,z_0) = \sup\{ |f(z_0)|^2\ :\ f\in A^2(\Omega), \|f\| =1\}.$$
The supremum is being taken over a normal family, and hence the supremum is attained for some (unique) function $\phi_0\in A^2(\Omega)$.
Step 2: Next we choose the unique function $\phi_1\in A^2(\Omega)$ with $\phi_1(z_0)=0$, $\dfrac{\partial \phi_1}{\partial z_1}(z_0)$ real, $\|\phi_1\|=1$, and $\dfrac{\partial \phi_1}{\partial z_1}(z_0)$ maximal. Again in case of
$$ \sup\left\{ \dfrac{\partial f}{\partial z_1}(z_0) :\ f\in A^2(\Omega)\ , \ f(z_0)=0, \|f\| = 1, \dfrac{\partial f}{\partial z_1}(z_0) \text{ real} \right\},$$
the suprenum is taken over a normal family and hence the supremum is attained for some unique function $\phi_1$.
Orthogonality: Note that by the reproducing property of the Bergman Kernel, we have
\begin{equation} \langle \phi_1, \phi_0\rangle = \left\langle \phi_1, \dfrac{K(\cdot,z_0)}{\sqrt{K(z_0,z_0)}}\right\rangle = \dfrac{\phi_1(z_0)}{\sqrt{K(z_0,z_0)}} = 0 \end{equation}
Further steps: Now the author says "Continue this process to create an orthogonal system on $\Omega$". Here is what I did:
Step 3: Choose the unique element $\phi_2\in A^2(\Omega)$ with $\phi_2(z_0)=\dfrac{\partial \phi_2}{\partial z_1}(z_0)=0$, $\dfrac{\partial^2 \phi_2}{\partial z_1^2}(z_0)$ real, $\|\phi_2\|=1$, and $\dfrac{\partial^2 \phi_2}{\partial z_1^2}(z_0)$ maximal. The uniqueness and existence is the same as above. Also, same as before, the reproducing property of the Bergman kernel gives us $\langle \phi_0, \phi_2\rangle = 0$.
My question: Why is $\langle \phi_1, \phi_2\rangle = 0$? Is there an explicit description of $\phi_1$ (just as we have for $\phi_0$)?