In the paper by Chow (1971), a stronger result was shown: if $(X_t)_{t\geqslant 1}$ is a uniformly integrable martingale difference sequence, then $T^{-1}\mathbb E\left\lvert\sum_{t=1}^TX_t \right\rvert\to 0$.
In particular, one does not need moments of order $p>1$.
Let us explain the idea. We consider the truncated version of $X_t$ defined by
$$
X_{t,\leqslant M}:=X_t\mathbf{1}\{\lvert X_t\rvert\leqslant M\}-\mathbb E\left[X_t\mathbf{1}\{\lvert X_t\rvert\leqslant M\}\mid\mathcal F_{t-1}\right]
$$
and the tail part
$$
X_{t,\gt M}:=X_t\mathbf{1}\{\lvert X_t\rvert\gt M\}-\mathbb E\left[X_t\mathbf{1}\{\lvert X_t\rvert\gt M\}\mid\mathcal F_{t-1}\right].
$$
In this way, $X_t=X_{t,\leqslant M}+X_{t,\gt M}$ and $\left(X_{t,\leqslant M}\right)_{t\geqslant 1}$ and $\left(X_{t,\gt M}\right)_{t\geqslant 1}$
are martingale difference sequences.
Let $\tau\colon M\mapsto \sup_{t\geqslant 1}\mathbb E\left[\left\lvert X_t\right\rvert\mathbf{1}\{\left\lvert X_t\right\rvert>M\}\right]$; by definition of uniform integrability, $\tau(M)\to 0$ as $M$ goes to infinity.
Observe that
$$\tag{0}
\frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_t \right\rvert\leqslant \frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_{t,\leqslant M}\right\rvert+\frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_{t,\gt M}\right\rvert;
$$
therefore, we have to bound the contribution of each terms. The second one is easier to treat: we have
$$
\frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_{t,\gt M}\right\rvert\leqslant 2\tau(M)\tag{1}.
$$
For the first one, we use the fact that the random variables $\left(X_{t,\leqslant M}\right)_{t\geqslant 1}$ are pairwise orthogonal. We get that
$$
\frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_{t,\leqslant M}\right\rvert
\leqslant \frac 1T\sqrt{ \mathbb E\left[\left(\sum_{t=1}^TX_{t,\leqslant M}\right)^2\right] }=\frac 1T\sqrt{ \sum_{t=1}^T\mathbb E\left[X_{t,\leqslant M} ^2\right] }.
$$
Then
$$
\mathbb E\left[X_{t,\leqslant M} ^2\right]\leqslant 4\mathbb E\left[X_t^2\mathbf{1}\{\lvert X_t\rvert\leqslant M\}\right]\leqslant 4M\tau{0}\tag{2}
$$
hence the combination of (0), (1) and (2) gives
$$
\frac 1T\mathbb E\left\lvert\sum_{t=1}^TX_t \right\rvert\leqslant 2\frac{\sqrt M}{\sqrt T}\sqrt{\tau(0)}+2\tau(M).
$$
Take $M=\sqrt T$ to conclude.