Let $u, v \in \Bbb C \setminus \{0\}$ such that $u^{2n} + v^{2n} − u^n v^n = 0$ where $n \in \Bbb N^+$.
(a) Show that $$u = v \left(\cos\left(\frac{6k+1}{3n}\pi\right)\pm i\sin\left(\frac{6k+1}{3n}\pi\right)\right)$$ for $k=0,1,2,\ldots, n-1.$
(b)
i) Using (a), solve the equation $(z+ai)^{2n}+(z-ai)^{2n} - (z^2+a^2)^n=0$ where a is a non-zero real number.
ii) Deduce that $$\prod\limits_{k=1}^{n-1}\cot^2\left(\frac{6k+1}{6n}\pi\right) = 2 - (-1)^n$$
For part (a), we can solve the original equation by regarding it as a quadratic equation with the variable u and we have
$$u^n=\frac{v^n±\sqrt{v^{2n}-4v^{2n}}}2=(\frac{1}2-\frac{\sqrt{3}}2i)v^n$$
Hence $u=\sqrt{(\frac{1}2)^2+(\frac{\sqrt{3}}{2})^2} e^{i(\frac{5\pi}{3}+\frac{2k\pi}{n})}v=(\cos(\frac{6k+1}{3n}\pi)±i\sin(\frac{6k+1}{3n}\pi))v$ for $k=0,1,2,\ldots, n-1.$
Therefore
$$u=v(\cos(\frac{6k+1}{3n}\pi)±i\sin(\frac{6k+1}{3n}\pi))$$
for $k=0,1,2,\ldots, n-1$. For part (b) (i), results holds by simply putting $u=z+ai$ and $v=z-ai$
$z=\frac{(\cos(\frac{6k+1}{3n}\pi)-i\sin(\frac{6k+1}{3n}\pi)+1)ai}{\cos(\frac{6k+1}{3n}\pi)-i\sin(\frac{6k+1}{3n}\pi)+1}$
However, I am quite stuck in the last part.