1

Find if the function $x\mapsto |\sin (x)-1|$ is differentiable at $x=\pi /2$ .

I get stuck at $$\lim_{h \rightarrow 0}{ \left|{\cos h \over h}\right|}$$

Git Gud
  • 31,706
Aman Mittal
  • 2,145

2 Answers2

1

HINT:

With Graham Hesketh's solution, the differentiability of $(1-\sin x)$ is established here

As $$\frac{d f(x)}{dx}=\lim_{h\to0}\frac{f(x+h)-f(x)}h$$

$$\implies \frac{d f(x)}{dx}_{(\text{at }x=a)}=\lim_{h\to0}\frac{f(a+h)-f(a)}h$$

Here $f(x)=1-\sin x, a=\frac\pi2$

So, $$\frac{d(1-\sin x)}{dx}_{(\text{at }x=\frac\pi2)}=\lim_{h\to0}\frac{1-\sin (\frac\pi2+h)-(1-\sin\frac\pi2) }h=\lim_{h\to0}\frac{1-\cos h}h$$ which is proved here

  • Thanks Again, 1 side question though, if i just have to find the limit of $cosh \over h$ as $h \rightarrow 0$ how do i approach it ? The answer is "doesn;t exist" right ? – Aman Mittal Jul 06 '13 at 16:54
  • @AmanMittal, my pleasure. As $\cos 0=1, \lim_{h\to0^+}\frac{\cos h}h=+\infty, \lim_{h\to0^-}\frac{\cos h}h=-\infty$ – lab bhattacharjee Jul 06 '13 at 16:55
1

$\sin(x)\le 1\Rightarrow |\sin(x)-1|=1-\sin(x)$

so this example is differentiable everywhere.

[see lab bhattacharjee's solution for the differentiability of $1-\sin(x)$ ]

:)