Find if the function $x\mapsto |\sin (x)-1|$ is differentiable at $x=\pi /2$ .
I get stuck at $$\lim_{h \rightarrow 0}{ \left|{\cos h \over h}\right|}$$
Find if the function $x\mapsto |\sin (x)-1|$ is differentiable at $x=\pi /2$ .
I get stuck at $$\lim_{h \rightarrow 0}{ \left|{\cos h \over h}\right|}$$
HINT:
With Graham Hesketh's solution, the differentiability of $(1-\sin x)$ is established here
As $$\frac{d f(x)}{dx}=\lim_{h\to0}\frac{f(x+h)-f(x)}h$$
$$\implies \frac{d f(x)}{dx}_{(\text{at }x=a)}=\lim_{h\to0}\frac{f(a+h)-f(a)}h$$
Here $f(x)=1-\sin x, a=\frac\pi2$
So, $$\frac{d(1-\sin x)}{dx}_{(\text{at }x=\frac\pi2)}=\lim_{h\to0}\frac{1-\sin (\frac\pi2+h)-(1-\sin\frac\pi2) }h=\lim_{h\to0}\frac{1-\cos h}h$$ which is proved here
$\sin(x)\le 1\Rightarrow |\sin(x)-1|=1-\sin(x)$
so this example is differentiable everywhere.
[see lab bhattacharjee's solution for the differentiability of $1-\sin(x)$ ]
:)