How to work around to find the limit for these functions :
$$\lim_{h\rightarrow 0} \frac{e^{-h}}{-h}$$
$$\lim_{h\rightarrow 0} \frac{|\cos h-1|}{h}$$
For the second one i think that the limit doesn't exist.
How to work around to find the limit for these functions :
$$\lim_{h\rightarrow 0} \frac{e^{-h}}{-h}$$
$$\lim_{h\rightarrow 0} \frac{|\cos h-1|}{h}$$
For the second one i think that the limit doesn't exist.
HINT:
$(1):\lim_{h\to0}e^{-h}=1$
$(2):$ $$\cos h=1-2\sin^2\frac h2\implies \cos h-1=-2\sin^2\frac h2$$
$$\implies \frac{\cos h-1}h=-\left(\frac{\sin \frac h2}{\frac h2}\right)^2 \frac h4$$
Note that $\cos h\le 1$ so $|\cos h-1|=1-\cos h$.
$$\lim_{h\to 0} \frac{1-\cos h}{h}=\lim_{h\to 0} \frac{(1-\cos h)(1+\cos h)}{h(1+\cos h)}=\lim_{h\to 0} \frac{1-\cos^2 h}{h(1+\cos h)}=\lim_{h\to 0}\frac{\sin h}{h}\lim_{h\to 0}\frac{\sin h}{1+\cos h}=1\cdot 0=0$$
The first one doesn't exist, because $\lim_{h\to 0}e^{-h}=1$. The second one can be done either via Taylor series, l'Hopital's rule or the the following trick:
$$\frac{\cos h-1}{h}=\frac{\cos h - \cos 0}{h-0}\to (\cos h )'|_{h=0}=0.$$
Use the reverse Prosthaphaeretic identities.
$$\cos(a)-\cos(b)=-2\sin((a+b)/2)\sin((a-b)/2)$$
Taking into account that $\cos(0)=1$
Then you can write
$$\frac{\cosh-1}{h}=\frac{-2\sin(h/2)\sin(h/2)}{h}.$$
Use then that
We know that $e^x=\frac{x^0}{0!}+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots$ Note that for $|h|<1$ and sufficiently small, $$ \frac{1}{0!}(-h)^0+\frac{1}{1!}(-h)^1 \leq e^{-h} \leq \frac{1}{0!}(-h)^0+\frac{1}{1!}(-h)^1+\frac{1}{2!}(-h)^2 $$ which is the same as $$ 1-h \leq e^{-h} \leq 1-h+\frac{1}{2}h^2 $$ implies $$ 1-\frac{1}{h} \geq \frac{e^{-h}}{-h} \geq 1-\frac{1}{h}-\frac{1}{2}h $$ Make $h\to 0$. What you get? Now the other limit. Note that \begin{align} \frac{|\cos(h)-1|}{h} = & 2\frac{\left|\cos\left(2\dfrac{h}{2}\right)-1\right|}{\dfrac{h}{2}} \\ = & 2\frac{\left|1-2\sin^2\left(\dfrac{h}{2}\right)-1\right|}{\left(\dfrac{h}{2}\right)} \\ = & 4\frac{\left|\sin^2\left(\dfrac{h}{2}\right)\right|}{\left(\dfrac{h}{2}\right)} \\ = & 4\left(\dfrac{h}{2}\right)\frac{\sin^2\left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)^2} \end{align} Make $h\to 0$. What you get?