1

This post is an offshoot of this MSE question.

Motivation

Let $x, y$ and $z$ be positive integers.

Denote the sum of divisors of $x$ by $\sigma(x)$. Also, denote the deficiency of $y$ by $D(y)=2y-\sigma(y)$. Lastly, denote the abundancy index of $z$ by $I(z)=\sigma(z)/z$.

Let $N = p^k m^2$ be an odd perfect number with special/Euler prime $p$ satisfying $p \equiv k \equiv 1 \pmod 4$ and $\gcd(p,m)=1$. Since $p^k$ and $m^2$ are proper factors of the perfect number $N = p^k m^2$, then $p^k$ and $m^2$ are deficient.

From the referenced paper, and using the facts that $D(p^k) > 1$ and $D(m^2) > 1$, we have the bounds $$\frac{2p^k}{p^k + D(p^k)} < I(p^k) < \frac{2p^k + D(p^k)}{p^k + D(p^k)}$$ and $$\frac{2m^2}{m^2 + D(m^2)} < I(m^2) < \frac{2m^2 + D(m^2)}{m^2 + D(m^2)}$$ from which we obtain $$\frac{4p^k m^2}{(p^k + D(p^k))(m^2 + D(m^2))} < I(p^k)I(m^2) = 2 < \frac{(2p^k + D(p^k))(2m^2 + D(m^2))}{(p^k + D(p^k))(m^2 + D(m^2))}.$$

This answer by mathlove improves these bounds to

$$\frac{2n}{n+D(n)}<\frac{(2a+2)n−aD(n)}{(a+1)n+D(n)}<I(n) \tag{1}$$

$$I(n)\lt\frac{(2b+4)n-bD(n)}{(b+2)n+D(n)}\lt \frac{2n+D(n)}{n+D(n)}\tag{2},$$

(where it is implicit that $D(n)>1$) and also shows that it holds for any $a>0,b\gt -1$.

So initially, I have the inequalities $$\dfrac{(2c + 2)p^k - cD(p^k)}{(c + 1)p^k + D(p^k)} < I(p^k) < \dfrac{(2d + 4)p^k - dD(p^k)}{(d + 2)p^k + D(p^k)}$$ $$\dfrac{(2e + 2)m^2 - eD(m^2)}{(e + 1)m^2 + D(m^2)} < I(m^2) < \dfrac{(2f + 4)m^2 - fD(m^2)}{(f + 2)m^2 + D(m^2)}.$$

Per mathlove's result, these inequalities hold for any $c > 0$, $e > 0$, $d > -1$, and $f > -1$. In particular, the inequalities hold for $c = d = e = f = 1$.

We then obtain $$\dfrac{(4p^k - D(p^k))(4m^2 - D(m^2))}{(2p^k + D(p^k)(2m^2 + D(m^2))} < I(p^k)I(m^2) = 2 < \dfrac{(6p^k - D(p^k))(6m^2 - D(m^2))}{(3p^k + D(p^k))(3m^2 + D(m^2))}. \tag3$$


Let us focus on the LHS of Inequality (3) first. We get $$(4p^k - D(p^k))(4m^2 - D(m^2)) < 2(2p^k + D(p^k)(2m^2 + D(m^2))$$ $$4p^k m^2 + 2p^k \sigma(m^2) + 2m^2 \sigma(p^k) + \sigma(p^k)\sigma(m^2) = (2p^k + \sigma(p^k))(2m^2 + \sigma(m^2)) < 2(4p^k - \sigma(p^k))(4m^2 - \sigma(m^2)) = 32p^k m^2 - 8p^k \sigma(m^2) - 8m^2 \sigma(p^k) + 2\sigma(p^k)\sigma(m^2),$$ an inequality which is equivalent to $$30 p^k m^2 = 28p^k m^2 + \sigma(p^k)\sigma(m^2) > 10 p^k \sigma(m^2) + 10 m^2 \sigma(p^k),$$ whence by dividing throughout by $10 p^k m^2$, we obtain the final estimate $$I(m^2) + I(p^k) < 3,$$ which agrees with (and does not improve on) known computations.


Now, let us focus on the RHS of Inequality (3). We derive $$2(5p^k - \sigma(p^k))(5m^2 - \sigma(m^2)) = 2(3p^k + D(p^k))(3m^2 + D(m^2)) < (6p^k - D(p^k))(6m^2 - D(m^2)) = (4p^k + \sigma(p^k))(4m^2 + \sigma(m^2))$$ $$2(25p^k m^2 - 5p^k \sigma(m^2) - 5m^2 \sigma(p^k) + \sigma(p^k)\sigma(m^2)) < 16p^k m^2 + 4p^k \sigma(m^2) + 4m^2 \sigma(p^k) + \sigma(p^k)\sigma(m^2)$$ $$36p^k m^2 = 34p^k m^2 + \sigma(p^k)\sigma(m^2) < 14p^k \sigma(m^2) + 14m^2 \sigma(p^k).$$ Dividing throughout the last inequality by $14 p^k m^2$, we obtain $$\dfrac{18}{7} = \dfrac{36}{14} < I(m^2) + I(p^k),$$ a lower bound which does not improve on the previously known $$\dfrac{57}{20} < I(m^2) + I(p^k).$$

Questions

(1) Is there a $4$-tuple $(c,d,e,f)$ such that the inequalities for $I(p^k)$ and $I(m^2)$ (due to mathlove) result to (an) improved lower (and/or upper) bound(s) for $I(p^k) + I(m^2)$?

(2) If the answer to Question (1) is NO, can you explain why?

Reference

Jose Arnaldo Bebita Dris, A Criterion for Deficient Numbers Using the Abundancy Index and Deficiency Functions, arXiv:1308.6767 [math.NT], 2013-2016; Journal for Algebra and Number Theory Academia, Volume 8, Issue 1 (February 2018), 1-9

1 Answers1

1

We have $$\dfrac{(2c + 2)p^k - cD(p^k)}{(c + 1)p^k + D(p^k)} < I(p^k) < \dfrac{(2d + 4)p^k - dD(p^k)}{(d + 2)p^k + D(p^k)}$$ and $$\dfrac{(2e + 2)m^2 - eD(m^2)}{(e + 1)m^2 + D(m^2)} < I(m^2) < \dfrac{(2f + 4)m^2 - fD(m^2)}{(f + 2)m^2 + D(m^2)}$$ where $c > 0,e > 0,d > -1$ and $f > -1$.

Therefore, we get $$\dfrac{(2c + 2)p^k - cD(p^k)}{(c + 1)p^k + D(p^k)}\cdot\dfrac{(2e + 2)m^2 - eD(m^2)}{(e + 1)m^2 + D(m^2)}\lt I(p^k)I(m^2)=2\lt \dfrac{(2d + 4)p^k - dD(p^k)}{(d + 2)p^k + D(p^k)}\cdot\dfrac{(2f + 4)m^2 - fD(m^2)}{(f + 2)m^2 + D(m^2)}$$


From the inequality on the left, we obtain $$\bigg((2c + 2)p^k - cD(p^k)\bigg)\bigg((2e + 2)m^2 - eD(m^2)\bigg)\lt 2\bigg((c + 1)p^k + D(p^k)\bigg)\bigg((e + 1)m^2 + D(m^2)\bigg)$$ i.e. $$\bigg(2p^k +c\sigma(p^k)\bigg)\bigg(2m^2 +e\sigma(m^2)\bigg)\lt 2\bigg((c+3)p^k -\sigma(p^k)\bigg)\bigg((e + 3)m^2-\sigma(m^2)\bigg)$$ i.e. $$\bigg(2(c+3)(e+3)-4+2(2-ec)\bigg)p^km^2=\bigg(2(c+3)(e+3)-4\bigg)p^km^2+\bigg(2-ec\bigg)\sigma(p^k)\sigma(m^2)\gt \bigg(2c+6+2e\bigg)p^k\sigma(m^2)+\bigg(2e+6+2c\bigg)m^2\sigma(p^k)$$ Dividing the both sides by $(2c+2e+6)p^km^2$ gives $$I(m^2)+I(p^k)\lt 3$$


From the inequality on the right $$2\lt \dfrac{(2d + 4)p^k - dD(p^k)}{(d + 2)p^k + D(p^k)}\cdot\dfrac{(2f + 4)m^2 - fD(m^2)}{(f + 2)m^2 + D(m^2)}$$ we obtain $$2\bigg((d + 2)p^k + D(p^k)\bigg)\bigg((f + 2)m^2 + D(m^2)\bigg)\lt \bigg((2d + 4)p^k - dD(p^k)\bigg)\bigg((2f + 4)m^2 - fD(m^2)\bigg)$$ i.e. $$2\bigg((d + 4)p^k -\sigma(p^k)\bigg)\bigg((f + 4)m^2 -\sigma(m^2)\bigg)\lt \bigg(4p^k +d\sigma(p^k)\bigg)\bigg(4m^2 +f\sigma(m^2)\bigg)$$ i.e. $$\bigg(2(d+4)(f+4)-16+2(2-df)\bigg)p^km^2\lt \bigg(2(d+4)+4f\bigg)p^k\sigma(m^2)+\bigg(2(f+4)+4d\bigg)m^2\sigma(p^k)$$ Dividing the both sides by $p^km^2$ gives $$4d+4f+10\lt (d+4+2f)I(m^2)+(f+4+2d)I(p^k)$$

Now, $d+4+2f=f+4+2d$ holds if and only if $f=d$ for which we have $$I(m^2)+I(p^k)\gt \frac{8d+10}{3d+4}$$ Let $f(d)=\dfrac{8d+10}{3d+4}$. Then, $f'(d)=\dfrac{2}{(3d+4)^2}\gt 0$, so we get $$I(m^2)+I(p^k)\gt \lim_{d\to\infty}f(d)=\color{red}{\frac 83}$$ which is larger than $\dfrac{18}{7}$, but is still smaller than $\dfrac{57}{20}$.

mathlove
  • 151,597
  • Hi there, @mathlove. I had to un-accept your answer. $f(d) = (8d + 10)/(3d + 4)$ implies $f'(d) > 0$, which means that $f$ is an increasing function of $d$. Hence, surely you will agree that $$I(m^2) + I(p^k) > f(d) \geq f(1) = \dfrac{18}{7},$$ and not $$I(m^2) + I(p^k) > \lim_{d \rightarrow \infty}{f(d)} = \dfrac{8}{3}?$$ – Jose Arnaldo Bebita Dris Jan 20 '22 at 12:50
  • 1
    @Arnie Bebita-Dris : Note that for any $d\gt -1$, $I(m^2)+I(p^k)\gt f(d)$ holds. This means that we have $I(m^2)+I(p^k)\gt f(100)$, $I(m^2)+I(p^k)\gt f(1000)$ and $I(m^2)+I(p^k)\gt \displaystyle\lim_{d\to\infty}f(d)=\dfrac 83$. – mathlove Jan 20 '22 at 13:43