Motivation
Let $x, y$ and $z$ be positive integers.
Denote the sum of divisors of $x$ by $\sigma(x)$. Also, denote the deficiency of $y$ by $D(y)=2y-\sigma(y)$. Lastly, denote the abundancy index of $z$ by $I(z)=\sigma(z)/z$.
Let $N = p^k m^2$ be an odd perfect number with special/Euler prime $p$ satisfying $p \equiv k \equiv 1 \pmod 4$ and $\gcd(p,m)=1$. Since $p^k$ and $m^2$ are proper factors of the perfect number $N = p^k m^2$, then $p^k$ and $m^2$ are deficient.
From the referenced paper, and using the facts that $D(p^k) > 1$ and $D(m^2) > 1$, we have the bounds $$\frac{2p^k}{p^k + D(p^k)} < I(p^k) < \frac{2p^k + D(p^k)}{p^k + D(p^k)}$$ and $$\frac{2m^2}{m^2 + D(m^2)} < I(m^2) < \frac{2m^2 + D(m^2)}{m^2 + D(m^2)}$$ from which we obtain $$\frac{4p^k m^2}{(p^k + D(p^k))(m^2 + D(m^2))} < I(p^k)I(m^2) = 2 < \frac{(2p^k + D(p^k))(2m^2 + D(m^2))}{(p^k + D(p^k))(m^2 + D(m^2))}.$$
The LHS of the last inequality yields $$p^k m^2 < p^k D(m^2) + m^2 D(p^k) + D(p^k)D(m^2),$$ while the RHS results to $$D(p^k) D(m^2) < 2p^k m^2.$$
Dividing throughout the last two inequalities by $p^k m^2$, we get $$1 < \frac{D(p^k)}{p^k} + \frac{D(m^2)}{m^2} + \frac{D(p^k)}{p^k}\cdot\frac{D(m^2)}{m^2}$$ $$= \bigg(2 - I(p^k)\bigg) + \bigg(2 - I(m^2)\bigg) + \bigg(2 - I(p^k)\bigg)\bigg(2 - I(m^2)\bigg)$$ $$= 4 - \bigg(I(p^k) + I(m^2)\bigg) + 6 - 2\bigg(I(p^k) + I(m^2)\bigg)$$ $$= 10 - 3\bigg(I(p^k) + I(m^2)\bigg) \implies I(p^k) + I(m^2) < 3$$ and $$6 - 2\bigg(I(p^k) + I(m^2)\bigg) = \bigg(2 - I(p^k)\bigg)\bigg(2 - I(m^2)\bigg) = \frac{D(p^k)}{p^k}\cdot\frac{D(m^2)}{m^2} < 2$$ $$\implies 2 < I(p^k) + I(m^2)$$
Since it is known (Corollary 10, page 5) that $$\frac{57}{20} < I(p^k) + I(m^2) < 3$$ it is my impression that:
(1) The LHS of $$\frac{2n}{n + D(n)} < I(n) < \frac{2n + D(n)}{n + D(n)}$$ (for $D(n) > 1$) is best-possible.
<p><strong>(2)</strong> The RHS of <span class="math-container">$$\frac{2n}{n + D(n)} < I(n) < \frac{2n + D(n)}{n + D(n)}$$</span> (for <span class="math-container">$D(n) > 1$</span>) is <em>not</em> best-possible.</p>
Question
Are my impressions correct?
Reference
Jose Arnaldo Bebita Dris, A Criterion for Deficient Numbers Using the Abundancy Index and Deficiency Functions, arXiv:1308.6767 [math.NT], 2013-2016; Journal for Algebra and Number Theory Academia, Volume 8, Issue 1 (February 2018), 1-9
I am still getting $$I(p^k) + I(m^2) < 3$$ as the final inequality after careful simplification.
I think, in that sense, I can say that my original lower bound is best-possible.
– Jose Arnaldo Bebita Dris May 08 '20 at 01:43