Background
There is a good accepted answer by @Claude Leibovici, but we use the Inverse of the Regularized Incomplete Beta function $\text I^{-1}_x(a,b)$ defined as the median of the Beta distribution which uses the Regularized Beta function $\text I_x(a,b)$ with the following definitions: $$\text I_x(a,b)=\frac{\Gamma(a+b)}{\Gamma(b)\Gamma(a)}\int_0^x t^{a-1} (1-t)^{b-1}dt,\frac{\int_0^{\text I^{-1}_x(a,b)}t^{a-1} (1-t)^{b-1}dt }{\text B(a,b)}=\text I_{\text I^{-1}_x(a,b)}(a,b)\mathop=^{0\le x\le1}x$$ Now note that when: $$\text I_{1-x}(2,r)=rx^{r+1}-(r+1)x^r+1$$ for example let’s solve for $x$: $$\text I_{1-x}(2,e)= ex^{e+1}-(e+1)x^e+1=\frac12\implies 2ex-2(e+1)+x^{-e}=0\implies x=0.587686… =1-\text I^{-1}_\frac12(2,e)$$ with this verification.
If a special case of the Regularized Beta function can be solved in closed form for its subscripted $x$ value, then you can derive many special cases for the Inverse of the Regularized Beta function in terms of other functions. Unfortunately there is a small domain, little research on the inverse function, and a limited amount of polynomials that we can use it for, but let’s try the following to get a general, but slightly complicated, closed form for $x$ in $x^r-x+a$ in terms of $\text I^{-1}_x(a,b)$ which may simplify into simpler functions if the $a,b,x$ are not too complicated.
Solution Derivation:
Assume the equation is in the form of:
$$\text I_{1-ax}(2,-r)+b=(ax)^{-r}((ax)^r-arx+r-1)+b=0\implies (ax)^r-arx+r-1+(ax)^rb=(b+1)(ax)^r-arx+r-1=0\implies x^r-\frac{ar}{(b+1)a^r}x+\frac{r-1}{(b+1)a^r}=0$$
The goal is to have the coefficient of $x$ to be $-1$, so let:
$$\frac{ar}{(b+1)a^r} =1\implies b=ra^{1-r}-1; a^r,ar\ne 0$$
Now that we have gotten rid of one variable:
$$x^r-\frac{ar}{(b+1)a^r}x+\frac{r-1}{(b+1)a^r}= x^r-\frac{ar}{(ra^{1-r}-1 +1)a^r}x+\frac{r-1}{(ra^{1-r}-1 +1)a^r}=x^r-x+\frac{r-1}{ar}=0 $$
Now we can let $\frac{r-1}{ar}=A$ to solve for $x^r-x+A=0$. Let’s see what happened to the other side of the equation:
$$(ax)^r \text I_{1-ax}(2,-r)+b(ax)^r = (b+1)(ax)^r-arx+r-1=0\implies \frac x{b+1} \text I_{1-ax}(2,-r)+\frac{bx}{b+1} = x^r-\frac{ar}{(b+1)a^r}x+\frac{r-1}{(b+1)a^r}=0 \implies \frac x{ra^{1-r}-1 +1} \text I_{1-ax}(2,-r)+\frac{ra^{1-r}-1 x}{ra^{1-r}-1 +1} = \frac{xa^{r-1}}{r}\text I_{1-ax}(2,-r)+\left(1-\frac{a^{r-1}}r\right)x=x^r-x+\frac{r-1}{ar}=0 $$
Finally:
$$\frac{xa^{r-1}}{r}\text I_{1-ax}(2,-r)+\left(1-\frac{a^{r-1}}r\right)x=x^r-x+\frac{r-1}{ar}=0 $$
Notice that both sides will always equal zero, so we can split them up and do each case separately which works:
$$ x^r-x+\frac{r-1}{ar} =0, \frac{a^{r-1}}{r}\text I_{1-ax}(2,-r)+1-\frac{a^{r-1}}r=0 \implies \text I_{1-ax}(2,-r)+ \frac r{a^{r-1}} - 1 =0$$
Old Series Approximation Method:
$$\boxed{x^r-x+\frac{r-1}{ar} =0\implies x=\frac{1-\text I^{-1}_{1-r a^{1-r}}(2,-r)}a} ,0\le 1-r a^{1-r} \le 1,r<0$$
using the “Inversebetaregularized$(z,a,b)$” command in Wolfram Alpha or Mathematica for $\text I^{-1}_z(a,b)$.
It looks like you may need complex $a,r$, but let me see later.
The formula itself looks useless, but here is proof of how it could be used with multiple domain extensions.
Here is an example using the series expansion
Now use $$x^r-x+\frac{r-1}{ar}=\sqrt[e]x-x+\frac1e-\frac1{e^2}=0, a=e^2,r=\frac1e\implies x=0.592109…, 0.0250461…$$
Using our derived formula:
$$\sqrt[e]x-x+\frac1e-\frac1{e^2}=0 \implies x=\frac{1-\text I^{-1}_{1-e^{1-\frac2e}}\left(2,-\frac1e\right)}{e^2}$$
Now plug into our series from Wolfram Functions:
First term+second term
Third term
Fourth term
Final result after adding terms, coefficients, and constants
After 4 terms in the Inverse Regularized Beta series, we get that $x≈0.02547$ when the root is actually $x=0.02504…$. Please correct me and give me feedback.
Therefore when we use the series expansion for $\text I^{-1}_z(2,b)$, we have the following final solution:
$$\boxed{x^r-x+a=0\implies x=\frac{ar\left(1-\text I^{-1}_{1-r\left(\frac{r-1}{ar}\right)^{1-r}}(2,-r)\right)}{r-1},\text I^{-1}_z(2,-r)= -\frac{2(r+1)z}{3r(r-1)}+\sqrt{\frac{2z}{r(r-1)}}+\frac{(r+1)(11r+2)\left(\frac z{r(r-1)}\right)^\frac32}{18\sqrt 2} -\frac{(r+1)(43r^2+5r-2)}{135r^2(r-1)^2}+…\in\Bbb R}$$
”Closed form:”
Transforming $$x^{-r}-x+a=0\implies x=\frac{ar\left(1-\text I^{-1}_{1+r\left(\frac{r+1}{ar}\right)^{-1-r}}(2,r)\right)}{r+1},-1\le r\left(\frac{r+1}{ar}\right)^{-1-r}\le0 $$
does not need any slow series for:
$$\boxed{x^r-x+a=0\implies x=\frac{br}{(1-r)\left(\text I^{-1}_{\frac{1-r}b\left(\frac{br}{r-1}\right)^r+1}(2,r-1)-1\right)},-1\le \frac{1-r}b\left(\frac{br}{r-1}\right)^r \le 0}$$
Test here or see formula $1$ here