Let $\| A \|_2 := \sqrt{\lambda_{\max}(A^TA)}$. As part of the gradient of a regularized loss function (for machine learning), I need the gradient $\nabla_A \| A \|_2^2$, which, using the chain rule, expands to $2 \| A \|_2 \nabla_A \| A \|_2$. How can I find $\nabla_A \| A \|_2$?
I start with $\|A\|_2 = \sqrt{\lambda_{\max}(A^TA)}$, then get
$$\nabla_A \| A \|_2 = \frac{1}{2 \sqrt{\lambda_{\max}(A^T A)}} \nabla_A \left(\lambda_{\max} \left( A^T A \right) \right)$$
but after that I have no idea how to find $\nabla_A \left(\lambda_{\max} \left( A^T A \right) \right)$.
edit: would I just take the derivative of $A$ (call it $A'$), and take $\lambda_{\max}(A'^TA')$?