Let $\Sigma$ be a $k\times k$ positive semi-definite real matrix. Suppose the exists a sequence $(a_n)\subset\mathbb R^k$ with $|a_n|\leq M$ for all $n$ and $a\in\mathbb R^k$ such that
$$(a_n-a)^\top \Sigma (a_n-a) \to 0 \quad \text{as } n\to \infty$$
Question: Does there exists $b\in\mathbb R^k$ with $|b|\leq M$ such that $(a_n-b)^\top \Sigma (a_n-b) \to 0$ as $n\to \infty$?
If $\Sigma$ is positive definite with eigendecomposition $Q\Lambda Q^T$ then we get $(a_n-a)^\top Q\to 0$ which implies $a_n\to a$ and so we can take $b=a$.
But what about the case where some eigenvalues of $\Sigma$ are zero?