I tried, in vain, to prove the following formula for the determinant of a cyclic matrix: $$ \begin{vmatrix}a_1&a_2&a_3&\cdots&a_n\\a_n&a_1&a_2&\cdots&a_{n-1}\\a_{n-1}&a_n&a_1&\cdots&a_{n-2}\\\vdots&\vdots&\vdots&&\vdots\\a_2&a_3&a_4&\cdots&a_1\end{vmatrix}=f(\epsilon_0)f(\epsilon_1){\cdots}f(\epsilon_{n-1}), $$ where $\epsilon_0,\epsilon_1,\dots,\epsilon_{n-1}$ are the $n$-th roots of unity, and $f(x)=a_1+a_2x+a_3x^2+\cdots+a_nx^{n-1}$.
I tried to add all columns to the first one and factor $a_1+a_2+\cdots+a_n=f(\epsilon_0)$ but I got nowhere. On the internet I found only one proof which uses eigenvectors but I wonder whether this identity could be proven using only column/row operations.