Let $A$ be an arbitrary invertible matrix, and let $\alpha = v^{\mathsf T}A^{-1}v$. Then by the Sherman-Morrison formula,
\begin{align}
v^{\mathsf T}(A + vv^{\mathsf T})^{-1}v &= v^{\mathsf T}\left(A^{-1} - \frac{A^{-1}v v^{\mathsf T}A^{-1}}{1 + v^{\mathsf T}A^{-1}v}\right)v \\
&= v^{\mathsf T} A^{-1}v - \frac{v^{\mathsf T}A^{-1}v v^{\mathsf T}A^{-1}v}{1 + v^{\mathsf T}A^{-1}v} \\
&= \alpha - \frac{\alpha^2}{1+\alpha} = \frac{\alpha}{1 + \alpha}.
\end{align}
Now all we have to do is extend this to the non-invertible matrix $A$ by some kind of limit operation.
To do this, rewrite everything in terms of adjugate matrices. This means $\alpha$ becomes $\frac{v^{\mathsf T} \mathrm{adj}(A) v}{\det(A)}$, so that $\frac{\alpha}{1+\alpha}$ simplifies to $\frac{v^{\mathsf T} \mathrm{adj}(A) v}{\det(A) + v^{\mathsf T} \mathrm{adj}(A) v}$. We get the equation
$$
\frac{v^{\mathsf T}\mathrm{adj}(A + vv^{\mathsf T})v}{\det(A + vv^{\mathsf T})} = \frac{v^{\mathsf T} \mathrm{adj}(A) v}{\det(A) + v^{\mathsf T} \mathrm{adj}(A) v}
$$
which we proved above for invertible $A$. But both sides are rational functions of the entries of $A$ and $v$, and invertible matrices are dense in the set of all matrices. So the equation must actually hold for all $A$ and $v$ in all cases when the denominators do not vanish. In particular, when $\det(A) = 0$, provided that $v^{\mathsf T} \mathrm{adj}(A) v \ne 0$, the right-hand side simplifies to $1$, proving the identity we wanted.
The problematic cases $v^{\mathsf T} \mathrm{adj}(A) v = 0$ occur exactly when $A + vv^{\mathsf T}$ is not a full-rank matrix, in which case the inverse we're taking does not exist.