Let $\ a_{ij}, b_{jv}\ $ be the entries in row $\ i\ $ and colummn $\ j\ $ of $\ A^T\ $, and row $\ j\ $ and column $\ v\ $ of $\ B^T\ $, respectively, and for $\ v=1,2\ $, let $\ C(v)\ $ the $\ 3\times3\ $ matrix whose entry in row $\ i\ $ and column $\ j\ $ is $\ a_{ij}b_{jv}\ $, and $\ \alpha(v)\ $ the $\ 3\times1\ $ column vector whose $\ i^\text{th}\ $ entry is $ a_ib_{iv}\ $. Then the probability that $\ v_1,v_2,\dots v_m\ $ are the first $\ m\ $ observed outputs is
\begin{align}
p(v_1,v_2,\dots,v_m)&=\sum_{h_1=1}^3\sum_{h_2=1}^3\dots\sum_{h_m=1}^3a_{h_1}b_{h_1v_1}a_{h_1h_2}b_{h_2v_2}a_{h_2h_3}\dots a_{h_{m-1}h_m}b_{h_mv_m}\\
&=\alpha(v_1)^TC(v_2)C(v_3)\dots C(v_m)\mathbb{1}\ ,
\end{align}
where $\ \mathbb{1}\ $ is the $\ 3\times1\ $ column vector all of whose entries are $\ 1\ $.
For $\ t=2,\dots, m\ $, the row vectors $\ \alpha_t=\alpha(v_1)^T\prod _\limits{i=2}^tC(v_i)\ $ can be computed iteratively by
\begin{align}
\alpha_2&=a(v_1)^TC(v_2)\\
\alpha_t&=\alpha_{t-1}C(v_t)\ ,
\end{align}
each step of which can be performed by multiplying a row vector by one of the matrices $\ C(v)\ $. The required probability can then be obtained by computing the dot product $\ \alpha_m\mathbb{1}\ $. For your matrices $\ A\ $, and $\ B\ $, you have
\begin{align}
C(1)&=\pmatrix{0.5\times0.7&0.3\times0.4&0.2\times0.8\\
0&0.6\times0.4&0.4\times0.8\\
0&0&1\times0.8}\\
&=\pmatrix{0.35&0.12&0.16\\
0&0.24&0.32\\0&0&0.8}\ ,\\
C(2)&=\pmatrix{0.5\times0.3&0.3\times0.6&0.2\times0.2\\
0&0.6\times0.6&0.4\times0.2\\
0&0&1\times0.2}\\
&=\pmatrix{0.15&0.18&0.04\\
0&0.36&0.08\\0&0&0.2}\ ,\\
\alpha(1)^T&=\pmatrix{0.9\times0.7&0.1\times0.4&0}\\
&=\pmatrix{0.63&0.04&0}\ ,\text{ and}\\
\alpha(2)^T&=\pmatrix{0.9\times0.3&0.1\times0.6&0}\ .
\end{align}
The probability that the first $\ 3\ $ observed outputs are $\ v_1=1, v_2=2 $ and $\ v_3=1\ $ is therefore
\begin{align}
&\alpha(1)^TC(2)C(1)\mathbb{1}\\
&=\pmatrix{0.63&0.04&0}\pmatrix{0.15&0.18&0.04\\
0&0.36&0.08\\0&0&0.2}\pmatrix{0.35&0.12&0.16\\
0&0.24&0.32\\0&0&0.8}\pmatrix{1\\1\\1}\\
&=\pmatrix{0.0945&0.128&0.0284}\pmatrix{0.63\\0.56\\0.08}\\
&=0.153823\ .
\end{align}