This is the simplest proof I've been able to find.
Just by rearranging factorials, we can rewrite the hypergeometric probability function as
$$ \mathrm{Prob}(X=x) = \frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}} = \frac{1}{x!} \cdot \dfrac{M^{(x)} \, K^{(x)}}{N^{(x)}} \cdot \dfrac{(N-K)^{(M-x)}}{(N-x)^{(M-x)}}, $$
where $a^{(b)}$ is the falling power $a(a-1)\cdots(a-b+1)$.
Since $x$ is fixed,
\begin{align*}
\dfrac{M^{(x)} \, K^{(x)}}{N^{(x)}}
&= \prod_{j=0}^{x-1} \dfrac{(M-j) \cdot (K-j)}{(N-j)} \\
&= \prod_{j=0}^{x-1} \left( \dfrac{MK}{n} \right) \cdot \dfrac{(1-j/M) \cdot (1-j/K)}{(1-j/N)} \\
&= \left( \dfrac{MK}{N} \right) ^x \; \prod_{j=0}^{x-1} \dfrac{(1-j/M) \cdot (1-j/K)}{(1-j/N)},
\end{align*}
which $\to \lambda^x$ as $N$, $K$ and $M$ $\to \infty$ with $\frac{MK}{N} = \lambda$.
Lets replace $N-x$, $K-x$ and $M-x$ by new variables $n$, $k$ and $m$ for simplicity. Since $x$ is fixed, as $N,K,M \to \infty$ with $KM/N \to \lambda$, so too $n,k,m \to \infty$ with $nk/m \to \lambda$. Next we write
$$ A = \dfrac{(N-K)^{(M-x)}}{(N-x)^{(M-x)}} = \dfrac{(n-k)^{(m)} }{(n)^{(m)}} = \prod_{j=0}^{m-1} \left( \dfrac{n-j-k}{n-j} \right)= \prod_{j=0}^{m-1} \left( 1 - \dfrac{k}{n-j} \right)$$
and take logs:
$$ \ln \, A = \sum_{j=0}^{m-1} \ln \left( 1 - \dfrac{k}{n-j} \right). $$
Since the bracketed quantity is an increasing function of $j$ we have
$$ \sum_{j=0}^{m-1} \ln \left( 1 - \dfrac{k}{n} \right) \le \ln \, A \le \sum_{j=0}^{m-1} \ln \left( 1 - \dfrac{k}{n-m+1} \right), $$
or
$$ m \, \ln \left( 1 - \dfrac{k}{n} \right) \le \ln \, A \le m \, \ln \left( 1 - \dfrac{k}{n-m+1} \right). $$
But $\ln (1-x) < -x$ for $0 < x < 1$, so
$$ m \, \ln \left( 1 - \dfrac{k}{n} \right) \le \ln \, A < -m \, \left( \dfrac{k}{n-m+1} \right), $$
and dividing through by $km/n$ gives
$$ \frac{n}{k} \, \ln \left( 1 - \dfrac{k}{n} \right) \le \dfrac{\ln \, A}{km/n} < - \, \left( \dfrac{n}{n-m+1} \right) = - \, \left( \dfrac{1}{1-m/n+1/n} \right). $$
Finally, we let $k$, $m$ and $n$ tend to infinity in such a way that $km/n \to \lambda$. Since both $k/n \to 0$ and $m/n \to 0$, both the left and right bounds $\to -1$. (The left bound follows from $\lim_{n \to \infty} (1-1/n)^n = e^{-1}$, which is a famous limit in calculus.) So by the Squeeze Theorem we have $\ln \, A \to -\lambda$, and thus $A \to e^{-\lambda}$. Putting all this together gives the result.